PRINT-0OUT

Price 70p

ISSUE FOUR

I 14] J (]

BY Thomas Defoe, Mark Gearing and Jonathan Haddock

Contributor :- Bob Teylor

-
)
e
|
==
_
=
_
—_—
==
-—
=
UL
—
O
7
-

Including:~ 75

BASIC and M/C tutorials
Homebrew Software
& many other articles

INDEX INFORMATION

[INIDIEX

Miscellaneous

Page 3 — EDITORIAL - What to lock out for

Page 40 ~ OFFERS ~ Something for everyone

Page 42 — SUBSCRIPTIONS - Treat yourself to 6 issues of Print-Out
Features

Page 10 - COMPANY FROFILE - What makes a homebrew company tick

Page 20 -~ PD SOFIWARE LIBRARY — PD on tape. ridiculous ?
Reviews

Page 17 - HOMEBEW SOFTWARE — More adventures and education too
Programming

Page 4 — BEGINNER'S BASIC - The tutorial continues...

Page 7 -~ MACHINE CODE - Number printing made easy

Page 12 - BITS & PIECES - Falling letters (a display routine)

Page 13 - SEABATILE (Part 1) — The MAXAM winning program

Page 21 - 'STEP RSX - A debugging aid for Machine Code

Page 26 — ADVANCED BASIC - Looking deeper into BASIC

Page 29 - BUBBLE SORT - Putting things in order

Page 33 - SEABATILE (Part 2) — The final installment

Page 36 — MACHINE CODE - Flags ard decision making in M/C

We would like to express our thanks to Mr Gearing and Black Horse
Agencies, Januarys, for the continued use of their photocopier in
the production of this issue of Frint—Out.

Please note that we do not support piracy in any form whatsoever,
unless back—ups are for the sole use of the original owner.

o

CONSULTANT SURV EYORS

2

EDITORIAL INFORMATION

Coitorial

WELCOME TO ISSUE FOUR OF PRINT-OUT !!
We hope that you enjoy reading it !!!

If this is your first time for buying
Print-Out we hope you enjoy it enough
to buy back issues and if you are now
a 'regular' we hope that you continue
to buy the magazine which ‘caters for
all serious users of the Amstrad CPC'
If everything goes according to plan,
(we managed it this time !!!) we hope
to have completed Issue Five by about
May 30th. If you wish to order a copy
of Issue Five in advance, please send
one of the following :—

a) 70p + A4 SAE (with a 28p stamp)

b) £1.10 (which includes pt+p)
Of course you can also order previous
issues, further future issues or even
have a subscription (see 'Offers' for
more details).

We would like to thank Bob Taylor for
contributing to Print-Out and also to
the other people who have helped with
the production of this issue. If any-
body would like to contribute pieces

of writing, programs or even artwork

we'd be most interested and grateful.
It can be on virtually any CPC relat—
ed matter so we look forward to hear-—
ing from you ! (see address below)

Of course, if you've any questions or
problems concerning the CPC please do
not hesitate to write to us and we'll
do our best to try and solve it.

The address to write to is :—
PRINT-OUT, 8 Maze Green Road,
Bishop's Stortford,
Herts CM23 2PJ.

BEGINNER'S BASIC BASIC TUTORIAL

[n\ e
Basfiic| BEGINNERS 470
TUTORIAL BASIC]

We have now locked at printing information, inputting instructions or infor-—
mation from the user, using this 'data'’ in our own calculations and also, most
recently, repeating instructions. However, there is one very important concept
that we have not covered and that is decision making. Very few programs except
the simplest of them, will not contain some example of the computer having to
make some decisions. If we take a small program, such as a game of noughts and
crosses between two human players. it is cbvious that numercus decisions will
have to be made. Not only will the computer need to determine where a O or a X
must go on the grid and even whether it can be placed in that position, but it
will also have to judge who has won and lost.

The most common decision making instruction is known as the IF...THEN...ELSE
command. This allows the computer to compare one piece of information with anc—
ther and IF some condition(s) are met, THEN the program will do one thing, but
IF the conditions are not met, it will do something ELSE. Before we look at the
command in great detail, type in and RUN the program shown below that will give
you some idea of what the command can do.

16 INPUT "What is your name "jnames$

20 a$=UPPERS (name$)

30 IF a$="ARNOLD" THEN PRINT "That’s my name!" ELSE PRINT "Hello "j;name$
49 END

We've already discussed line 10 in previous issues. As a reminder, it gets you
to type in a word (ie your name) which is stored in the variable 'name$'. Line
20 converts whatever was in name$ into capital letters and then stores that in
a$. So suppose you enter 'Bill' as your name in line 10@. After the execution of
line 2@, name$ would still hold Bill, but a$ would hold BILL. Line 3@, however,
is the important line for us and it requires some careful investigation.

What this line does is to check and see if the contents of a$ match the word
ARNCLD, if they do it decides to print "That's my name!" and then ignores ever—
ything upto the end of the line. If the contents of a$ don't match ARNCLD then
the computer chooses to print whatever follows the EISE statement ("Hello what-—
ever you entered"). Of course you can do other things as well as printing in an
IF...THEN...ELSE command. Look at the example, on the next page. which uses the
commands GOTO and FOR...NEXT which we looked at last time.

BEGINNER'S BASIC BASIC TUTORIAL

The program is :—

10 INPUT "Do you want me to clear the screen (yes/rno) "j;a$
20 b$=UPPERS$ (a$)

30 IF b%$="YES" THEN CLS ELSE GOTO So

40 END

30 FOR i=1 TO 1000

&0 PRINT '"x";

70 NEXT i

80 END

This program asks you to reply either 'ves' or 'no' to its initial question.
Line 3@ then checks to see what vou typed and if you did type 'ves' the program
clears the screen (CLS which follows the THEN), ignores the rest of line 30 and
executes line 48 which ends the program. However if you typed 'mo’' (or anything
other than yes). it executes the command after the ELSE instruction which sends
it to line 35@. Lines 5@ — 8@ simply fill the screen with stars and then end the
program. For a full explanation of these lines see Issue 3 — Beginner's Basic.

IF...THEN.. .ELSE instructions are very flexible and we can use other types of
variables in the command. For example we can say whether a variable is greater
than or smaller than a particular number or not, whether a variable is equal to
a certain number or not, or even whether a variable multiplied by PI is larger
than the logarithm of another variable or not !! We can also have more than one
condition which needs to be met before a certain action can take place. Look at
this program :—

10 INPUT "Enter a number between 1 and 10 ",num

20 IF num>10 OR num<l THEN PRINT “Your number’s not between 1 & 10":60T0 10
3@ PRINT "Thank you for your number"

40 END

This short program illustrates several new points. Line 10 is simple encugh and
just asks you to enter a number which is stored in the variable ‘num’'. Line 208
checks to see if 'num' is greater than 10 or smaller than 1. If either of these
conditions is met then the message will be printed and the program will go back
to line 10. Notice how the ELSE part of the statement has been ommitted & this
is because it is an optional part — the THEN part must always be present.

The listing shown below just asks you for a number and then decides whether
it is equal to one or not. It then tells you its incredible conclusion and asks
for another number.

19 INPUT rum
20 IF num=1 THEN PRINT "It’s one":G0TO 10:ELSE PRINT "It isn’t ore":60T0 10
3@ END

BEGINNER'S BASIC BASIC TUTORIAL

In line 20, if the number that is stored in 'num' is 1, then everything upto the
word EISE will be executed. If the number in 'num’' is not 1 then everything from
the EILSE to the end of the line will be executed. In either case line 30 will be
executed. If we wished, we could even have the 'ELSE' part of the statement on a
separate line except that it would not need the ELSE in front of it. Although it
makes no difference in this example, this may not be possible with some programs.

1@ INPUT num

20 IF num=1 THEN PRINT "It is orne":6G0TO 10
30 PRINT "It isn’t ore":60T0 10

4@ END

It works for this example because line 3@ would be executed only when ‘num’' did
not equal one. This is the one of the reasons why ELSE can be omitted from this
type of statement. At some time you may wish to test to see if something is
different (or not equal) from something else. The way to do this is to use <>.
Look at the example which is a revised version of an earlier listing :—

10 INPUT "What is your name ";name$

20 a$=UPPERS (names$)

30 IF a$<>"ARNOLD" THEN PRINT "Your name is different from mine!"
409 END

Now the message is printed only if the name that you entered (stored in 'names'
and then in 'a$') is different from 'ARNCLD'.

That concludes this issue's section on 'DECISION MAKING' in Beginner's BASIC but
from now on, more and more of your programs in BASIC, especially as they become
longer and of greater complexity, will involve IF...THEN...ELSE commands as this
is the most common of the decision making commands. At the bottom of the page is
a list of all the commands that we have looked at so far for your reference, and
following them is the issue in which they were mentioned.

COMMANDS LOOKED AT SO FAR :—

AUTO - ISSUE 2 GOTO - ISSUE 3 RENUM - ISSUE 2
CLS - ISSUE 1 LIST - ISSUE 1 RUN - ISSUE 1
EDIT - ISSUE 1 LOWER$ -~ ISSUE 2 THEN — ISSUE 4
EISE - ISSUE 4 NEW - ISSUE 2 TROFF -~ 1ISSUE 3
FOR - ISSUE 3 NEXT - ISSUE 3 TRON - ISSUE 3
IF - ISSUE 4 PRINT - ISSUE 1 UPPER$ - 1ISSUE 2
INPUT - ISSUE 2

MACHINE CODE TUTORIAL

MACHITNT> CODIE-

the final installment in ‘PRINTING'
PART 4

In Issue Three. we wrote a short program that accepted two numbers and then
calculated and printed their total. However this routine was able to deal only
with sums that had an answer that fell between 8 and 9. In this issue. we will
try to write a program that will print much larger numbers upto 65535 (the re—
ason for this number is explained later). In the last part of this tutorial we
touched on 'conditional' instructions and these play a major part in all mach—
ine code programs. The routines in this tutorial include many examples of con-—
ditional instructions and in order to understand how they work it will be ben—
ificial if vou have read the section on 'FLAGS AND CONDITIONS' first.

Those of you who have looked at other machine code tutorials before may have
realised that we have used only six calls to the firmware (see Issue One for an
explanation) so far. Normally, by the fourth part of a series on machine code.
you would have been introduced to about 25 different firmware calls! The reason
for this is that when you understand the basics of machine code, you can apply
your Knowledge to all areas of programming. However, if you feel that you wish
to explore machine code further by vourself, the best way of doing this is to
disassemble some of the machine code listings in this magazine (eg. STEP) and
try to work out what is happening in them. If vou do not have a disassembler,
we supply copies of all the programs in the magazine. complete with comments on
what the program is doing, at the cost of £1, including postage and packing.

As we have already mentioned, in this article we are going to write a short
routine that will print any number from @ to 63535 (giving 65536 possiblilities
in total) on the screen. The reason why only 63536 numbers can be printed using
this method is relatively simple to explain. In the computer's memory, hundreds
of numbers are stored and each of these numbers is called a byte and these can
hold a number from between @ and 255, this is the largest number which can be
represented by an 8 digit binary number (see Issue One — 'What is my Amstrad').
Therefore one byte can store 256 possible numbers arxd when two bytes are used
together we can store 256 x 256 (=65536) different numbers. Often two bytes are
utilised in this way either in memory or stored in a REGISTER PAIR.

BASIC POKER

Next to all the routines contained in this issue (in the leftmost column) there
are rows of numbers. These numbers should not be typed into an ASSEMBLER, hut
they are intended for use by those who do not possess one. These numbers can be
typed into the 'BASIC Poker' which was printed in both Issues One and Two. This
program 1s included on every issue's program cassette ard includes instructicons
for its correct use.

MACHINE CODE TUTCRIAL

The listing itself contains many fairly self explanatory comments and extra
notes on some of the trickier parts are printed after the program. However, the
basic idea is that the program is subtracting multiples of 10 (in a decreasing
order) from the number that is stored in HL (the number to be printed). Every
time this happens it increases the A register by one and this acts as a counter.
It then repeats this subtraction until HL holds a negative number and when this
occurs the carry flag is set. The number in HL then has the multiple of 1@ ADDED
to it in order to make it a positive number for future calculations. The number
in A (a record of the number of times that the multiple of 10 was subtracted) is
converted into its ASCII code by adding &3@ to it and printed. This sequence is
now repeated with smaller and smaller multiples of 18, until only the units are
left and these are then printed without the need for an adjustment.

ORG &4000
21 32 30 LD H.,12345 ; the number to print is stored in HU
@1 10 27 LD BC, 10000 ; BC=10000
CD 22 40 CALL prt_dig ; calculate and print the 10000°s digit
1 EB8 @3 LD BC, 1000 ; BC=1000
CD 22 40 CALL prt_dig ; calculate and print the 1000’s digit
01 &4 0@ LD BC,100 ; BC=100
CD 22 4¢ CALL prt_dig ;3 calculate and print the 100°s digit
@1 @A o0 LD BC,10 ; BC=19
CD 22 40 CALL prt_dig ;3 calculate and print the 10’s digit
7D LD A,L ; the value left is less than 1@
Co6 30 ADD A,&30 ; add &3@ to convert this digit into one that
3 can be printed (see note above)
CD 5A BB CALL &BBSA ;3 print the units digit
ce RET ;5 return
.prt_dig 3 the calculating routine
3E FF LD A,&F ;s the digit counter =-1 (see below)
. loop
3C INC A ; increase the counter by 1
ED 42 SBC HL,BC ; subtract the number that is stored in BC
; (ie 10000,1000,100,10) from the rumber to
;3 be printed that is in HL
32 FB JR NC, loop ; if H. becomes negative the carry will be set
; otherwise jump back to the label .loop
Q9 ADD HL,BC ; add the value in BC to HL, so that H. will
s contain a positive number for future use
C6 30 ADD A,&30 ; convert the value in A to a printable digit
CD 5A BB CALL &BB5A ; and then print the digit
ce RET s return from subroutine

When we CALL &4000 we get 12345 printed on the screen as we would expect. Some
of the commands used above are new and are explained on the next page.

MACHINE CODE TUTCRIAL

Before we look at the new commands, it is worthwhile to study exactly what
the program is doing during its execution. Below is shown a list of what really

happens when the routine is called. r_—
. HL is loaded with 12345 EEhlﬂE '

. BC is loaded with 10000 [::[][1[3

1

2

3. The routine 'prt_dig' is called

4. In this routine the following occurs :—

a) A is loaded with &FF. —

b) A is increased by one.

¢) BC is subtracted from HL and the carry flag is set if BC becomes negative.

d) As long as the carry flag is NOT set, jump to instruction 4b otherwise go
to instruction 4e.

e) BC will now contain a negative number (eg. -7655), so add BC to HL so that
a positive number (eg. 2345) will be produced.

f) A will now contain the number of times BC was subtracted from HL without a
negative number being produced (eg. 1). Add &3@ to this number in order to
convert it into its ASCII equivalent.

g) Print this number and then return to wherever this routine was called.

Now load BC with 1000 and go to instruction 4.

Then load BC with 180 and go to instruction 4.

BC is loaded with 10 and the routine goes to instruction 4.

. The remainder will be less than 1@, so add &30 (to convert it to its ASCII
equivalent) to it and then print the final digit

® & * o0 00 0 8

QN oW

At one point, the notes say that A is loaded with -1, but the instruction says
LD A.&FF, which may be a bit confusing. The reason for this is that &FF is the
largest number that can be stored in a single register. When A is increased by
one there is no room for the overflow and so A contains @ and the overflow is
discarded. If you now go back the other way. if you subtract 1 from 0, you get
-1 and so it would appear that &FF equals —1. This may sound confusing to you,
but if you think about it IS logical.

In the routine there are several new commands. The first is SBC which is simi-—
lar to SUB except that the carry is then subtracted from the number. This will
make some sense to you if you have locked at FLAGS. Likewise JR is another form
of a jump and stands for JUMP RELATIVE and is used to Jump small distances. but
at the moment you can treat it in the same way as you would a normal jump. The
NC,loop following it makes this a conditional jump (in this particular case, it
will jump only to .loop if there is No Carry) and this is explained in the part
on FLAGS in this issue.

That concludes this issue's section on Machine Code and in our next issue we
will look further at the flags and will start writing some useful routines. In
Issue Five we hope to start of section on advanced M/C which will include many
unusual and complicated programming techniques.

COMPANY PROFILE HOMEBREW

This article was written by Tony H@ME%MW

Kingsmill who runs a small company

that produces adventure games. Two @@M]]D AN Cmf

of his programs are reviewed else—

where in the magazine, but we felt J]D][RQDHE\MIH—DHE)

it would be interesting for others

to see why he started a homebrew company & how. It seems that homebrew software
is an important, and often neglected, part of the computer market & is thriving
especially on the CPC. Although the software industry for the CPC is strong, at
the moment, it will eventually decrease. It is then that users will turn to the
homebrew sector to supply their games and utilities. By printing this article,
we hope that some potential software writer may be stirred into producing their
own games. For have no doubt, that the day of the homebrew industry will come!!

ﬂ[am 16 years of age and still at school at Verulam. St.Albans. My first
taste of computers was with the Atari console, way back around 1980, but didn't
get a proper computer until about 1983. We bought an Acorn Electron, on which I
mainly played games at first. I was about eleven when I first became interested
in programming. I didn't really have much idea where to start and so I bought a
book with games to type in. I found this enjoyable and quickly became familiar
with many commands. From there I began to write my own programs in BASIC, vary-—
ing in quality but none were good enough to sell.

ﬂzzonsidering how old the CPC is now, I suppose I bought mine fairly late,
arourd February 1988 after I felt my Electron had seen better days! I chose the
CPC 6128 mainly because it is so versatile — it can be used for just about any-—
thing. 16-Bit software is far more expensive and apart from a few extras it all
does the same thing.

:[I[started producing adventure games (For a full review of bot?
towards the end of last summer. my first ‘Lords of Magic' and also
release being 'Lords of Magic', which is 'Island of Chaos' look at
available now. I did not finish the game the article on 'HOMEBREW
properly until December, constantly add-— SOFTWARE' — in this issue
ing to the game until I ran out of memory . we also feature a select—
Lords of Magic involves you being captured ion of educational progr-
in a strange land by the Lords of Magic, & \\gms from Matthew Pinder. 4)

you must find a way to escape. My second &
most recent release is the Island of Chaos based on the island of Brael Ti.
The game is about an evil ruler named Baktron who takes over the island, & it
is your mission to defeat him. Both games are £3.95 each which I feel is very
reasonably priced compared to what most professional companies charge and when
you consider the price of the blank disks, you're left with very little profit.

10

COMPANY PROFILE HOMEEBREW

}ﬂ;)ords of Magic and Islard of Chaos were both programmed with Gilscoft's
Quill Adventure Writing System. The system gives you (excluding graphics) about
30k to use. I found this was enough for Island of Chaos but I almost ran out of
bytes with Lords of Magic. Considering it's age, the Quill 1s very good, allow-
ing games to run reasonably fast, and of course, merge graphics designed on the
Tllustrator, Gilsoft's graphic designer for the Quill. The major set back with
the Quill is probably the parser — limited to understanding two words per sent—
ence. Nevertheless, I manage to get round this by using lots of small commands
rather than one larger one. For instance, instead of 'GET CANDLE AND LIGHT IT',
I would have to use 'GET CANDLE' then 'LIGHT CANDLE' as two separate sentences.

]El)ooking ahead, I will probably update to a system like the Professicnal
Adventure Writer (PAW), Gilsoft's more powerful system. This will enable me to
produce games with a better parser. At the moment I'm just producing adventures
and cannot see any reason to update to a more powerful computer or change the
style of games.

Ciﬂ[;ere is a lot of life in the CPC's yet, especially with the new models
arriving later in the year. With most major companies like Level 9 switching to
more arcade style 16 Bit games. more people will turn to homebrew companies for
new adventures, and most of them are cheaper too.

i‘%&s for the near future, I hope to continue releasing adventures though—
out the year. My next game will probably have less of a magical fantasy element,
possibly even futuristic. I also have plans for a sequel to Island of Chaos, but
that will depend on how successful Island of Chaos is.

(&f you run a small company that produces anything (games, hardware:‘\

programs, etc.) for the Amstrad range then we would be delighted to
hear from you. Not only would we give your product a full review in
Print-Out, but we would also like to write a company profile on you
because we believe that Homebrew programs & small companies will be
the future of the CPC. If you are interested in having your product
reviewed or in writing an article on your company then please write
to us at the address which is printed at the front of the magazine.AJ

\

11

bl
(A?]
[39]
o221
[FB1
[DA]
[F1]
[Al1]
{301
L4E]
{501
[381
a7l
[33]
[6A]
[o3]
[3A]
L2e]
[5F1]
[D23]

{711
[o71
L3F1]
[2A]
[E3]
{6313
[23]
(3A3
[2F1]
[BA1]
[5B1]
[CD1
{541
(821
£BC1]
[C?]
[2A]
{3C1]

10

E§LEESN

0
100
119
120
130
149
150
160
170
180
190
200

210

BITS AND PIECES

DATA 3E,02,CD,eE,BC,21,5E,40
DATA 4E,79,FE,00,C8,23,56,E5
DATA 06,18,3€,19,90,CD,72,BB
DATA 7A,CD,&F , BB, 3E,01,CD, 90
DATA BB,79,CD,5A, BB, 00, 00,00
DATA ©0,00,00,00,00,00,00,00
DATA ©0,3E,19,90,CD,72,B8B,7A
DATA CD, &F, BB, 3E,00,CD,90, BB
DATA 79,CD,SA, BB, 10,CC,3E, 19
DATA CD,72,BB,7A,CD,&F,BB,3E

DATA ©1,CD,%99,BB,79,CD,5A,BB
DATA E1,23,(3,08,40,C9,00,00
DATA end

add=&4000

READ a%$:IF a$="end" THEN GOTO 1%
POKE add, VAL ("&"+a%$) : add=add+1
GOTO 160

add=403E

BITS

PROGRAMMING

ANL
PIECGES

Listed on this page is a pro—
gram that provides you with a
rather unusual means of disp—
laying any message of upto 806
characters. The actual print-
ing section of the program is
written in M/Code but a BASIC
‘driver' pokes the message in
to the relevant places in the
computer's memory. Therefore,
by altering lines 245 onwards
you can change the pattern in
which the letters fall on the
screen. If you wish the lett—
ers to fall more slowly, just
change line 60 to read :—
DATA CD,19,BD,CD, 19,BD, 00,00

PRINT "Please enter the string you wish to be printed of no more than

80 letters :-"
LINE INPUT a%
IF LEN(a%$) >80 THEN GOTO 200

IF LEN(a$)<80 THEN as=as$+" ":60T0 230

DIM d(80,2)

FOR i=1 TO 8@

b=l EFT$ (a%, 1)

c=ASC(b%) :d(i,l)=c
d(i,2)=i
a$=RIGHT$(a%,80-1)

NEXT i

FOR =@ TO 4

FOR i=1+j TO 40+j STEP 5

/Mm@@h@@k@ﬁ'

A PROGRAM TYPING AID
for use with PRINT-OUT

- — — J

POKE add,d(8@-i,1):add=add+1:POKE add,d(80—i,2):add=add+1
POKE add,d(i,1):add=add+1:POKE add,d(i,2):add=add+1

NEXT i
NEXT j
POKE add, @
CALL &4000

SEABATTLE PROGRAM

by
S. MESSINA (JZ AIHQ
fal

This program was written by S. Messina from Heywood in Lancashire and was
his entry for the Maxam competition that we ran in Issue Two of our magazine.
This program earned him first place and a copy of Maxam from Arnor on tape.

The program is like a computerised 'Battleships' for your CPC. However, it
also features some excellent graphics and sound effects. When you have selected
the position you wish to bomb (in a 5 x 5 grid}, you can see the nissiles being
launched and if they hit the target, the ship explodes and sinks into the sea.
However, although the program is very good, it is quite long and you may feel
that it would be advantageous to buy the program cassette/disc which contains
this and all the other programs in the magazine.

When you have finished typing in the program and you run it, you are asked
for both players' names. Player Two is then asked to leave the room while Play-
er One positions his ships in the grid. Each position is identified by a two
character coordinate which should be entered in lower—case in the form 'letter
then number' (eg. al or d4). When Player One has positioned five targets, he is
asked to leave the room whilst Player Two enters his coordinates. When this is
done, the players take it in turns to try and locate the others ships by enter—
ing coordinates in the same manner as before. A grid is shown to remind players
vwhere they have already tried — a dot means a hit & a cross means a miss. The
game ends when one of the players has hit all five of the opposition's ships &
you are then given the opportunity to play again.

To aid typing in, we have printed Linechecker numbers (see Issue Three for a
full explanation) and we wish you good luck in the game.

PROGRAIT]

[CB] 10 SYMBOL AFTER 256:MEMORY 40959:5YMBOL AFTER 236:add=40969:PEN 1¢:6G0SUB 1830:G0SUB

1810
[D31 20 WINDOW 3,18,8,25
[4A] 30 ORIGIN 0,0,0,640,400,0:0LG @:LOCATE 4,4:PRINT"PLAYER(1)":LOCATE 5,7: INPUT " *,f$:

+$=UPPERS (%) : CLS
{641 40 LOCATE 4,4:PRINT"PLAYER(2) ":LOCATE 5,7:INPUT" “,qg%:q$=UPPER® (q%):CLS
(001 50 LOCATE 7,4:PRINT g%$:LOCATE 2,7:PRINT" Please leave'":FOR a=1 TO 820:NEXT:CLS
(OD] 60 LOCATE 7,4:PRINT f$:LOCATE 2,7:PRINT"Press any key'":k$=INKEY$:IF k$="" THEN &60:
ELSE OLSH#2:FOR a=0 TO 15:INK a,0:NEXT:GOSUB 730:G0SUB 720
[EA] 70 FOR p=8AFEC TO &AFFF:POKE p,&@:NEXT

13

[CE]

[B11]
CC43]

C[B73]
[OA]
CFD3
D81
[E2]
(F43
£2D]
[A&]
[993
£eba
[?01
£323
[0O33
{CrF3

[D71]

L7F1

{901

£333

[203

[20]

£@41

£721

L7E]

[8Al

SEABATTLE PROGRAM

80 LOCATE 9,4:PRINT +%$:LOCATE 4,9:PEN 10:PRINT"Choose S target';:WINDOWH4, 12,16, 19,
19: PAPER#4, O: PEN#4, 10: CLSH4

Q0 INPUTH#4," ",cs$:608UB 1780:1IF ic=0 THEN GOTO 90:EL.SE GOSUB 870:605UB 1190

100 INPUTH4," ",c$:6G08UB 290:IF ok=1 THEN GOTO 100:ELSE GOSUB 1780:1F ic=0 THEN GOTO
100:ELSE GOSUB 880:6G0SUB 1190
110 INPUTH4," ",c$:608UB 290:IF ok=1 THEN GOTO 110:ELS8E GDOSUB 1780:1IF ic=0 THEN GOTO
110:EL8E GOSUB 820:608UB 1190
120 INPUT#4," ",c$:6G08UB 270: IF ok=1 THEN GOTO 120:ELSE GOSUB 1780:IF ic=0 THEN GOTO
120:ELSE GOSUB 200:GOSUB 1190
130 INPUTH4," ",c$:608UB 290: IF ok=1 THEN GOTO 130:ELSE GOSUB 1780:IF ic=0 THEN GOTO
130:EL.8E GOSUB 210:6G0SUB 1190

140 CLS:LOCATE 7,12:PRINT +$:LOCATE 4,17:PRINT" Please leave';:FOR a=1 TO 820:NEXT:
CLS:LOCATE 7,12:PRINT g%

150 LOCATE 5,17:PRINT"Press any key":IF k$=""THEN 150:ELSF CLS:FOR a=0 T0O 15:INK a,0
+NEXT:6GOSUB 730:60SUB 720

160 LOCATE 8,4:PRINT q%:LOCATE 4,2:PRINT'"Choose S target'; :WINDOWH4,12,16,19,19:
PAPER #4,0:PENB4, 10:CLSH4

170 LOCATE#4,1,1: INPUTH4, " ",c$:605UB 1780:IF ic=0 THEN SOUND 1,500:G0TO 170:ELSE
GOSUB 920:6G0SUB 1190
180 INPUTH4," ",c$:608UB 300:IF ok=1 THEN GOTO 180:ELSE GOSUB 1780:1F ic=0 THEN GOTO

180:EL.SE GOSUB 230:303UB 1190
120 INPUTH#4, " ",c$:605UB 300: IF ok=1 THEN GOTO 190:ELSE GDSUB 1780:IF ic=0 THEN GOTO
190:ELSE GOSUB 940:60SUB 1190
200 INPUTH#4," ",c$:608UB 300: IF ok=1 THEN GOTO 200:ELSE GOSUB 1780:1IF ic=0 THEN GOTO
200:ELLSE GOSUB 950:6G0SUB 1190
210 INPUTH®4," ",c$:605UB 300:IF ok=1 THEN GOTO 210:ELSE GOSUB 1780:1F ic=0 THEN GOTO
210:EL8E GOSUB 960:60SUB 1190

220 cd=0:sd=0:sm=0:MODE O:LOCATE 4,15:PRINT"Please Wait..":FOR a=1 TO 1100:NEXT:FOR
a=0 TO 15:INK a,0:NEXT:CLS:G0OSUB 730: {SCR2: CL.8: GOSUB 730:60SUB 790

230 1SCR1:CLS:PEN 1:608UB 730:60SUB 790

240 BORDER 0:60SUB 720:PRINT =z#:LOCATE 12,16:PRINT F$:G0SUB 1510

230 CLS#2:PEN#2,10:60SUB 1460:G0SUB 1490: INPUTH2," ', c$:60SUB 1500:60SUB 1780: IF ic=
O THEN GOTO 250:ELSE PRINT x$:60SUB 630:G0SUB 1140:G03UB 1470

260 1SCR2:BORDER 1S:PRINT z$3;:L0CATE 12, 16:PRINT g#:WINDOW#2,13,16,19,19:PAPERH2,3
270 CLSH#H2:PEN#2, 10:60S8UB 1460:G0SUB 14%0:LOCATE#2,1, 1: INPUTHZ, ' ', c$:60SUB 1500:
G0OSUB 1780:IF ic=0 THEN GDTO 260:ELSE PRINT x$;:60SUB 310:G0SUB 1150:G0SUB 1470
280 15CR1:BORDER 0:G0OSUB 1510:CLSH#2: PEN#2, 10:GOSUB 1460:GOSUB 1490: INPUTHZ2," ", c$:
GOSUB 1500:G0SUB 1780:IF ic=0 THEN GOTO 280:ELSE PRINT x$::60SUB 630:6G0SUB 1140:
GOSUB 1470:G0T0O 260

290 IF VAL ("&"+c$)=PEEK (43300) OR VAL ("&"+c$)=PEEK (43501)0R VAL ("&"+c%)=PEEK (43502)
OR VAL ("&"+c$) =PEEK(43503)0R VAL ("&'"+c$) =PEEK (43504) THEN ok=1:G0SUB 1480:RETURN:
ELSE ok=0:RETURN

300 IF VAL ("&"+c$)=PEEK(43503) OR VAL ("&"+c$)=PEEK (43506)0R VAL ("&'"+c$)=PEEK (43507)
OR VAL ("&"+c$)=PEEK(43508)0R VAL ("&"+c$)=PEEK (43509) THEN ok=1:G0SUB 1480:RETURN:
ELSE ok=0:RETURN

310 IF VAL ("&'+c$)=PEEK (43500)AND PEEK(43515)=0 THEN cd=1:pop=0:POKE 43515, 1:G0SUB
F80:GOSUB 1190:RETURNIELSE IF VAL ("&"+c$)=PEEK (43500)AND PEEK (43515)=1 THEN pop=1:
GOTO 260:ELSE pop=0

320 IF VAL ("&"+c$)=PEEK (43501)AND PEEK(43516)=0 THEN cd=1:pop=0:POKE 43516, 1:G0SUB
1000:6G0SUB 1120:RETURN:ELSE IF VAL ("&"+c$) =PEEK (43501)AND PEEK (43516)=1 THEN pop=1:
GOTO 260:ELSE pop=0

330 IF VAL ("&"+c$)=PEEK (43502)AND PEEK (43517)=0 THEN cd=1:pop=0:POKE 43517,1:6G0SUB
1010:6G0SUB 1190:RETURN:ELSE IF VAL ("&"+c$)=PEEK (43302)AND PEEK(43517)=1 THEN pop=1:
GOTO 260:ELSE pop=0

340 IF VAL ("&"+c$)=PEEK(43503)AND PEEK(43518)=0 THEN cd=1:pop=0:POKE 43518, 1:G0SUB
1020:G0SUB 1190:RETURN:ELSE IF VAL ("&"+c$)=PEEK (43503)AND PEEK(43518)=1 THEN pop=1:
GOTO 260:ELSE pop=0

14

SEABATTLE PROGRAM

[BE] 350 IF VAL ("&"+c$)=PEEK(43504)AND PEEK (43519)=0 THEN cd=1:pop=0:poke 45319, 1:60SUB

LC?1
[AA]
f&l]
781
771
{833
[?43
[&E]
L7013
£{8C1
(BBl
LA2]
{B11
£Co1
EBC1
[AC]
{861
{953
{A3]
[B2]
C11
7Bl
L[CA]
[D?1
(B3]
[C51
[C4]
[19]

[oD3

(D21

£321

[C33

[DO3
[BE]
[BA]
[C?]
[C3]
[ACT
[22]
{SD3

(Br1

1030:6G0SUB 11920:RETURN:ELSE IF VAL ("&"+c$)=PEEK (43304)AND PEEK (43519)=1 THEN pop=l:

GOTO 260:EL.8E IF pop=0 THEN GOSUB 370

360 RETURN ' In Issue Three of Print-Qut, we l
370 IF cs="b3"THEN cd=0:60SUB &20: RETURN . . . T e
380 IF c$="al"THEN cd=0:GOSUB 690:RETURN included a listing called 'Line
390 IF c$="a2"THEN ccd=0:G0SUB 690:RETURN Checker' that produced codes for
400 IF c$="a3"THEN cd=0:G0SUB 690:RETURN every line of a program in order
410 IF c$="a4"THEN cd=0:G0SUB 700:RETURN to help eliminate typing errors.
420 IF c$="aS"THEN cd=0:G0SUB 700:RETURN : :
430 IF c$="b1"THEN cd=0:GOSUB 700:RETURN The numbers that are printed in
440 IF c$="b2"THEN cd=0:GOSUB 700:RETURN square brackets at the beginning
450 IF c$="b3"THEN cd=0:6G0SUB 700:RETURN of each line are the codes. They
460 IF c$="b4"THEN cd=0:G03SUB 710:RETURN should not be typed in & all the
470 IF c$="cl1"THEN cd=0:60SUB 710:RETURN programs will run correctly even
480 IF c$="c2"THEN cd=0:G0SUB 710:RETURN PRk L

490 IF c$="C3"THEN cc=0:GOSUB 710:RETURN if ‘Linechecker’ 1s not used.
3500 IF c$="c4"THEN cd=0:G03UB 710:RETURN For full instructions on how to
510 IF c$="c3"THEN cd=0:G08UB 690: RETURN use it, please refer to the ori-
520 IF c$="d1"THEN cd=0:G0SUB &%0:RETURN . . .

530 IF c$="d2""THEN cd=0:6085UB &90:RETURN ginal article in Issue Three.
540 IF c$="d3"THEN cd=0:G0SUB 700:RETURN

530 IF c$="d4"THEN cg=0:G0SUB 700:RETURN

S60 IF c$="d3"THEN cd=0:608UB 700:RETURN

570 IF c$="el"THEN cd=0:60SUB 700:RETURN

580 IF c$="e2"THEN cd=0:G0SUB 710:RETURN

590 IF c$="e3"THEN cd=0:60SUB 710:RETURN

600 IF c$="ed"THEN cd=0:G03UB 700:RETURN

610 IF c$="e5"THEN cd=0:G0SUB 690: RETURN

620 RETURN

630 IF VAL ("&"+c$)=PEEK (43505)AND PEEK (43510)=0 THEN cd=1:pop=0:POKE 43510, 1:60SUR

1030:GOSUB 1190:RETURN:ELSE IF VAL ("&'"+c%)=PEEK(43505)AND PEEK (43510)=1 THEN pop=1:
GOTO 280:ELSE pop=0

640 IF VAL ("&"+c%)=PEEK (43506)AND PEEK (43511)=0 THEN cd=1:pop=0:POKE 43511, 1:605UB
980:6G08UB 1120:RETURN:ELSE IF VAL ("&"+c$)=PEEK (43506)AND PEEK (43511)=1 THEN pop=1:
GOTO 280:ELSE pop=0

630 IF VAL ("&"+c$)=PEEK (43507)AND PEEK (43512)=0 THEN cd=1:pop=0:POKE 43512, 1:60SUB
1010:GOSUB 1120:RETURN:ELSE IF VAL ("&'"+c%$)=PEEK (43507)AND PEEK(43512)=1 THEN pop=1:
GOTO 280:ELSE pop=0

660 IF VAL ("&"+c$)=PEEK (43508)AND PEEK (43513)=0 THEN cd=1:pop=0:POKE 43513, 1:G0SUB
1000:GOSUB 1190:RETURN:ELSE IF VAL ("&"+c$)=PEEK (43508) AND PEEK(43513)=1 THEN pop=1:
GOTO 280:ELSE pop=0

670 IF VAL ("&''+c$)=PEEK (43509)AND PEEK (43514)=0 THEN cd=1:pop=0:POKE 43514, 1:605UB
1020:60SUB 1190:RETURN:ELSE IF VAL (“&"+c$)=PEEK (43509)AND PEEK (43514)=1 THEN pop=1:
GOTO 280:ELSE IF pop=0 THEN GOSUB 370

680 RETURN

690 GOSUB 1060:G0SUB 1530: RETURN

700 GOSUB 1070:G0SUB 1530: RETURN

710 GOSUB 1080:60SUB 1530: RETURN

720 INK 0,2:INK 1,13:INK 2,10: INK 3,3:INK 4,11:INK 5,24: INK 6,19: INK 7,23,6: INK 8,27
PINK 9,5:INK 10,26 TNK 11,21: INK 12,23: INK 13,10: INK 14,0: INK 15,26, 2:RETURN

730 WINDOw#4,1,20,12,25: PAPER#4, 0: CLS#4:WINDOW 1,20, 1,25: WINDOWH#2, 1,20, 12,25: PAPER#2
, S:OLSH2Z

740 PLOT 38,211,10:MOVE 5B,210: TAG:PRINT"1"; :MOVER 9,0:PRINT"2"; :MOVER 7,0:PRINT"3";
MOVER 8,0: :PRINT"4"; :MOVER 9,0:PRINT"S";

730 MOVE 19,185:PRINT"A"; :MOVER —33,-35:PRINT"B"; :MOVER -33,-35:PRINT'C"; :MOVER -33,
=39:PRINT"D"; :MOVER —-33,-3S5:PRINT"E"; : TAGOFF

760 MOVE 315,90:DRAWR 205,0:DRAWR 0,35:DRAWR ~203,0:DRAWR 0,-35:FOR y=20 TO 192 STEP

15

[61d
L4417
(133
[FB1

LDFJ

£4D3
1D3

[CF1
211
[CEd
[&60]
£7C1
£eca
(871
(991
[A?]
{B71]
[Ca3
(D71
{E?]
[4F3

[&6F]

£3Ad

271

£311

£63]

[F31]

F71
(591
[1D3
[441]
[&B]
£133
{7e3
C(EF3]
(133

[A21]

SEABATTLE PROGRAN

1:MOVE S0,y:DRAW 24S,y, 14:NEXT
770 FOR y=20 TO 200 STEP 35:MOVE SO,y:DRAW 245,y, 10:NEXT

780 FOR x=50 TO 250 STEP 40:y=195:MOVE x,20:DRAW x,vy, 10:NEXT: RETURN

790 PEN 4:WINDOWH#1,1,20,1,3:PAPER#L,4:CLS#1

800 PLOT —10,0,14: INK 1,26:TAG:MOVE 255,238:PRINT g$;:MIVE 255,250:PRINT g$;: TAGOFF:
PEN 10:LOCATE 3,4:PRINT h$;:PEN 4:LOCATE 2,S:PRINT veé;:PLOT 32,333,3:DRAWR 158,0

810 PEN 10:LOCATE 9,4:PRINT h#;:PEN 4:LOCATE 8,5:PRINT v$;:PLOT 227,332,3:DRAKR 148,
O:PEN 10:LOCATE 16,4:PRINT h$;:PEN 4:LOCATE 15,5:PRINT vé;:PLOT 452,330,3:DRAWR 148,0
820 PEN 10:LOCATE 5,6:PRINT h$;:PEN 4:L0CATE 4,7:PRINT v$;:PLOT 96,300,3:DRAWR 154,0
830 PEN 10:LOCATE 15,7:PRINT h$;:LOCATE 14,8:PEN 4:PRINT v$;:PLOT 416,284 ,3: DRAWR
155,0:FOR A=1 TO 1S5:PLOT 447,370:DRAWR —25¥SIN(A)—20,-17, 14:NEXT:PLOT 400, 440

840 FOR A=1 TO 10:PLOT 397,370:DRAWNR 2ZSXSIN(A)-~20,-17, 14:NEXT:PLOT 400,440

850 FOR A=1 TO 15:PLOT 47,370:DRAWR 25XSIN(AY-20,-17, 14:NEXT:PLOT 400,440, 14

860 RETURN

870 POKE 43500, VAL ("&"+c$) : RETURN

880 POKE 43501,VAL ("&"+c$) : RETURN

890 POKE 43502, VAL ("&"+c$) : RETURN

900 POKE 43503, VAL ("&"+c$) : RETURN

910 POKE 43504 ,VAL ("&"+c$) : RETURN =

G20 POKE 43505, VAL ("&"+c$) : RETURN B
930 POKE 43506, VAL ("&"+c$) : RETURN

40 POKE 43507 ,VAL ("&"+c$) : RETURN SEABATTLE
950 POKE 43508, VAL ("&"+c$) : RETURN

960 POKE 43509, VAL ("&"+c$) : RETURN

970 ENV 1,15,-1,20:0UT &BCOO,B:0UT &BDOO, 1:SPEED INK 1,1:BORDER O,26:S0UND 1,0,150,
15,1, ,31:WHILE (SA(1) AND &80)<>0:WEND:OUT &BCOO,8:0UT &BDOO,0: BORDER O:RETURN

980 GOSUB 1050:INK 0,15:FOR a=1 TO 100:NEXT:INK O,2:SPEED INK 1,5:LOCATE 3,4:PEN 7:
PRINT he;:FOR a=1 TO 250:NEXT:LOCATE 3,4:PEN 14:PRINT h$;:G0SUB 1040:FOR s=1 TO 16
990 ISINK,2,6,4,5:FOR i=1 TO 250:NEXT:NEXT:RETURN

1000 GOSUB 1050: INK 0, 15:FOR a=1 TO 100:NEXT:INK 0,2:SPEED INK 1,S5:LOCATE 9,4:PEN 7:
PRINT h$;:FOR a=1 TO 250:NEXT:LOCATE 9,4:PEN 14:PRINT h$;:GOSUB 1040:PEN 1:FOR s=1
TO 16:!SINK,8,13,4,5:FOR i=1 TO 250:NEXT:NEXT:RETURN

1010 GOSUB 1050: INK 0,15:FOR a=1 TO 100:NEXT:INK 0,2:SPEED INK 1,5:LOCATE 16,4:PEN 7
:PRINT h$;:FOR a=1 TO 1S0:NEXT:LOCATE 16,4:PEN 14:PRINT h$;:GOSUB 1040:PEN 1:FOR s=1
TO 16:!SINK,15,19,4,5:FOR i=1 TO 250:NEXT:NEXT:RETURN

1020 GOSUB 1050: INK 0,15:FOR a=1 TO 100:NEXT:INK 0,2:SPEED INK 1,5:LOCATE S,6:PEN 7:
PRINT h$;:FOR a=1 TO 250:NEXT:LOCATE 5,6:PEN 14:PRINT h$;:GOSUB 1040:PEN 1:FOR s=1
TO 16:!SINK,4,8,6,7:FOR i=1 TO 250:NEXT:NEXT:RETURN

1030 GOSUB 1050: INK 0,15:FOR a=1 TO 100:NEXT:INK 0,2:SPEED INK 1,5:LOCATE 15,7:PEN 7
:PRINT h$;:FOR a=1 TO 250:NEXT:LOCATE 15,7:PEN 14:PRINT h$;:GOSUB 1040:PEN 1:FOR s=1
TO 16:1SINK, 14,19,7,8:FOR i=1 TO 250:NEXT:NEXT:RETURN

1040 ENV 1,15,~1,20:0UT &BCOO,8:0UT &BDOO, 1:SPEED INK 1,4:BORDER 0,26:SOUND 1,0,50,
15,1, ,31:WHILE (SRA(1) AND 380)<>0:WEND:OUT &BCOO,8:0UT &BDOO,O: BORDER O:RETURN

1050 GOSUB 1090:GOSUB 1100: RETURN

1060 GOSUB 1090:G0SUB 1100:GOSUB 1110: RETURN

1070 GOSUB 1090:GOSUB 1100:GOSUB 1120:RETURN

1080 GOSUB 1090:G0SUB 1100:G0SUB 1130: RETURN

1090 SOUND 1,0,15,15,1,,31: TAG: PLOT 269,270,7:SPEED INK 1,1:PRINT j$;:FOR a=1 TO 100
:NEXT:PLOT 269,270,0:PRINT j$;:FOR a=1 TO 200:NEXT: TAGOFF : RETURN

1100 SOUND 4,0,15,15,1,,31: TAG:PLOT 293,270,7:SPEED INK 1,1:PRINT j$;:FOR a=1 TO 100
:NEXT:PLOT 293,270,0:PRINT j$;:FOR a=1 TO 350:NEXT: TAGOFF : RETURN

1110 GOSUB 1800:TAG:PLOT 5,350, 15:SPEED INK 1,2:PRINT s$;:PLOT 15,300, 15:PRINT s%; :
TAGOFF:FOR t=1 TO 15:!8INK,1,2,7,7: SINK,1,2,4,4:FOR a=1 TO 180:NEXT:NEXT:RETURN
1120 GOSUB 1800: TAG:PLOT 359,304, 1S5:SPEED INK 1,2:PRINT s$;:PLOT 269,316, 15:PRINT s$
s : TAGOFF:FOR t=1 TO 15:iSINK,9,10,6,6: ISINK,12,13,6,7:FOR a=1 TO 180:NEXT:NEXT:RETURN
1130 GOSUB 1800: TAG:PLOT 200,255, 15:SPEED INK 1,2:PRINT s$;:PLOT 290,265, 15:PRINT s$
; :TAGOFF:FOR t=1 TO 15:!SINK,7,8,9,10: {SINK, 10,10,7,8:FOR a=1 TO 180:NEXT:NEXT:RETURN

cont. an p.33

16

HOMEBREW REVIEW

~ DHOMEBREY REVIEWS

Lords Of Magic — BY TONY KINGSMILL

(Price — £3.95 on disc)

This is an adventure game which was written using The Quill with graphics
designed by the Illustrator from Gilsoft.

The plot is a simple one :— You have been sent to a distant land by power—
ful magic from where no—one has ever escaped. Many creatures will attack you at
first sight but a few have avoided the magical lords and live away from their
enemies. Most of these are humans and they know ways of defeating the magic but
are too old to do so. Your task is straightforward - find a way to defeat the
magic and then retwn home.

Now onto actually playing the game. The loading screen was particularly good
though there were no graphics but it was well laid out & loocked good to the eye.
I was pleased to find that there were graphics included in 'lLerds Of Magic' but
some of them were not very good and I had to rely totally on the description to
know where or what the location was & the graphics were the game's worst point
by far.

When I started playing the game. I was quite impressed with the text and the
overall descriptions (although some were rather short) of the various locations
but I thought that there could have been a larger vocabulary for the the player
to use and I would have liked to have seen a command to 'TAKE AIL' and to 'DROP
AllL', which would have made for less typing.

But in general the game was by no means bad but at the same time was nothing
special. However, let us not forget that it is a homebrew game and the price is
reasonable at £3.95 (including postage and packing). Unfortunately it is avail—
able only on disc but apparently there is the possibility of the game being re—
leased on tape at a later date. Be warned, though, that on a CPC 464 (even with
a disc drive) the loading screen program doesn't work correctly but this can be
overcome by simply running the game directly.

If you do buy the game but get stuck and would like some help (& believe me,
the game is hard!), Tony Kingsmill has produced some free clue sheets which are
available, providing that you send an SAE. The sheets include a list of all the
objects in the game, the most interesting locations & the solutions to the many
puzzles.

~
r>L£EIB OF MAGIC costs £3.95 on disc and can be obtained from:
Tony Kingsmill, 202 Park Street Lane, Park Street, St Albans
Hertfordshire ALZ 2AQ
PLEASE MAKE ALL CHEQUES/POSTAL ORDERS PAYABLE TO T.KINGSMILL
\, J

17

HOMEBREW REVIEW

IS[and Of Chaas - BY TONY KINGSMILL

(Price — £3.95 on disc)

This is the second of the two adventure games by Tony Kingsmill. Again it is
Quill based with the graphics designed on the Illustrator.

For some reason I liked the background to the game & the plot is that a long
time ago, there was a prosperous island called Brael Ti in the sea of Karzania.
Trading had always been an important feature of the island and Kansith, who was
the island's leader, was rich and believed to have possessed magic but despite
his fortune he looked after his people well. However soon Brael Ti was attacked
& taken over by a man called Baktron. Kansith was murdered & Brael Ti was isol—
ated from the outside world. Trading was forced to stop and no—one dared to set
foot on the island. But now, you have to explore the island & defeat the mighty
Baktron himself.

As I loaded the Island of Chaos I wondered whether it would be upto the same
standard as the previous game, Lords of Magic. I wasn't disappointed. The load-—
ing screen was again good as were the imaginative descriptions & puzzles (some
of which were quite tricky!).

Like Lords of Magic this game included graphics but unfortunately they were
not very good (the ones I saw at least) at all and this rather spoilt the whole
impression of the game and lowered its standard somewhat (as did a large number
of spelling mistakes!)

That apart the game was a good one and there were a number of small features
I particularly liked. These were notably the SAVE and LOAD postion features and
the SCORE command which gave your present score and health at the touch of a
button and the game was made even more interesting by an enjoyable, if slightly
limited, interaction with other characters. Another incidental that I found im—
pressive was the presentation of both of his games; it was obvious that a great
deal of effort had gone into making neat, clear and informative covers for his
games. It's little things like this that make a homebrew game more professional
and a tip that other homebrew software producers should take up.

Like the previous game, it failed to locad on a CPC 464 but again this could
easily be got around either by altering a line or two or running the main game
directly. On the 6128, however, the game loaded without any hitches.

So assuming that this small problem can be sorted out, I thought the game
was appealing enought, of a good enough standard (though by no means excellent)
and if you especially enjoy adventure games I would say that it's good value at
£3.95 on disc.

Like Lords Of Magic it is available only on disc at the moment & again there
are free clue sheets available providing you send an SAE.

(N
ISILAND OF CHACS costs £3.95 on disc and can be obtained from:

Tony Kingsmill, 202 Park Street Lane, Park Street, St Albans
Hertfordshire AL2 2AQ
PLEASE MAKE ALL CHEQUES/POSTAL ORDERS PAYABLE TO T.KINGSMILL

. J

18

HOMEBREW REVIEW

Educational Pack One ~ BY MATTHEW PINDER, MIP SOFTWARE

(Price — £5.95 on tape or disc)

Back in Issue Two of Print-Out we reviewed Maths Master Plus, a mathematical
aid by the small software company, MiP Software, and it was highly recommended.
Now, MiP have produced an education pack which includes Maths Master (the pred-
ecessor of Maths Master Plus) to suit ages from 9 to 14.

The pack includes a large number of mathematics programs that cover a wide
range of subjects. They include :— addition and subtraction (with 3 different
skill levels), multiplication and division, simultanecus equations, fractions &
percentages, areas, ratios, number series, indices and number guess. The last
program in the collection allows you to practice your welghing and balancing
skills.

With the disc (a tape version is available) comes a well presented and very
comprehensive instruction sheet of all the programs which explains each of them
in a clear and useful way. I won't bother to go through each of the 10 programs
in turn but I will give my general view on the whole pack.

The programs were well presented and organised and there was no confusion as
to what was going on at any time. Having said that, I thought that some of the
programs could have done with clearing the screen a bit more often, as when the
wrong type of input was entered the screen quickly twrned into a mess of words
arnd numbers.

I had the disc version to review and there was no problem with waiting for
the games to load but I would imagine that there could be a long wait on the
tape version (as I experienced when reviewing Maths Master Plus a while ago) .

The Educational Pack is probably aimed at the less advanced mathematicians
(more for 8-11 year olds) whereas the Maths Master program is designed for the
more advanced user. Maths Master is not an educational program but is rather an
advanced calculator where you enter the numbers and the computer gives yvou the
answer whereas the other programs in the Educational Pack are purely learning
aids. The only difference between Maths Master and Maths Master Plus is that the
latter is a more upto date version of the cother and features more functions. If
vou find maths hard, this must surely be a certain way to improve although the
game provides you with no real incentive to continue playing it.

The price is a very reasonable £5.95 on disc or double tape pack and with it
comes the extremely thorough instruction sheets. At that price, although not a
bargain, it certainly represents good value for money.

I also hear (on the grapevine!) that MiP are planning an Educational Pack 2
which will have an 'Englishy theme' (?) I shall wait in suspense and Keep you
informed in further issues of Print-Out.

(N
EDUCATIONAL PACK ONE costs £5.95 on disc or double tape pack

and is available from MiP Software, 4 Wham Hey. New Longton.,
Preston, Lancashire PR4 4XU.
PLEASE MAKE ALL CHEQUES/POSTAL ORDERS PAYABLE TO MATTHEW PINDER.
\. J

19

PUBLIC DOMAIN FEATURE

A short while ago, Print-Out heard of a

MDMM%MDM@ IIDqD ME new Public Domain library — CPD ~ which
- was tape based. There are very few such
libraries & so we asked the man behind

AMN O~ (IB-]I[DTD !] it, Alan Scully, to write an article on

his interesting venture and here it is.

Ever since I got my CPC, I have been programming. I chose the CPC because the
BASIC was like that of the BBC & was simple to learn. Within days I was writing
graphics programs, & within weeks I started on my first game, SUGAR DISC, which
I worked on for months because I would keep adding bits into it to try and make
it look more professional.

I first got the idea for distributing Public Domain Software through Amstrad
Action when I realised that there was a vast shortage of cassette based Public
Domain libraries for the Amstrad and so CPD, Cassette Public Domain, was bormn.
At first, getting programs was difficult. I had a large number of games that I
had written myself but more serious software like a Word Processor & an assemb—
ler were more difficult to find. I hunted around other Public Domain libraries
to get software, and the 'Type—ins' page of Amstrad Action proved a great help.
Then I had the problem of publicity. I wrote to Print—Out, and they invited me
to write this article.

CPD has every kind of program you could possibly want for your Amstrad., inclu—
ding Utilities, Educational Programs, Artificial Intelligence programs, serious
software & applications software. If all you want are games, then you need look
no further than CPD. We've three games packs that promise to entertain you with
every type of game you could possibly imagine:— Maze Games,Strategy Games,Snake
Games, Card Games, Shoot-em Games, even a Break-Out clone & a Cricket Game. CPD
alsoc caters for the BASIC programmer with the AA Sprite Editor, the AA Sprite
Driver, & subroutines to help with the more complicated tasks. Such subroutines
include Split Modes (from AA), 40 Characters in Mode 0, Multi-Height characters,
scrolling messages and many more. As a first order I strongly recommend the CPD
starter pack. It contains a selection from all our PD packs and is a great int—
roduction to the world of Public Domain software. If of course you would rather
choose a specific pack, then the packs CPD has are :—

CPD 1 : GAMES 1 CPD 5 : AI/EDUCATIONAL
CPD 2 : GAMES 2 CPD 6 : APPLICATIONS
CPD 3 : (BIG) GAMES 3 CPD 7 : SERIOUS

CPD 4 : SUBROUTINES/ROUTINES CFD 8 : STARTER PACK

So, finally, we come to the cost. For the starter pack send :—

A blank cassette. 25p to cover duplication, and a Stamped Addressed Envelope.
For two selections from the above list, serd :—

A blank cassette, 50p to cover duplication, and a Stamped Addressed Envelope.
The address is :—

ALAN SCULLY, 119 ILAUREL DRIVE, GREENHILLS, FEAST KILERIDE, GLASGOW G75 9JG.

20

&
A MACHINE CODE RSX

STIER

— A Single Stepping Routine

by BOB TAYLOR

Many people have found out the hard way that Machine Code is very difficult
to program correctly. One of the reasons for this is that machine code does not
possess a thorough and helpful error trapping system such as that used in BASIC
— often the first the programmer knows of an error is when the computer resets!
For this reason it is useful to be able to keep track of the various registers
and to see what effect the program has on them whilst running. In order to help
solve this problem, we have devised an RSX called iSTEP. It can be used to lock
at the values stored in the registers and to see how they are altered, step by
step, whilst the program is running. STEP is a relocatable RSX that is used to
‘single step' through Machine Code instructions.

r ~N The top line shows the Stack Pointer
When entering the RSX, a hexa— address (shown moved to &BF00 for use
decimal display similar to the with STEP) and the next four entries
following will be shown: on the stack. This address is the low

byte of the first 'word' (ie the sec-

SP BFo@ 0000 000@ 0000 0000 ord half of that word). In practice,
IY 0000 21 89 7F ED 49 C3 @0 00 this low byte is lower in memory than
IX 0000 @1 89 7F ED 49 C3 the high byte - however when display—
HL. @000 @1 89 7F ED 49 C3 ing a word, the high byte is written
DE 000@ @1 89 7F ED 49 C3 first. The display of any words above
BC 0000 01 89 7F ED 49 (3 S&BEFF does not necessarily show that
AF 00 FF SZ h PnC they have actually been PUSHed there.
PC 0000 91 89 7F A word PUSHED onto this Stack will be
_ Y sent to the two bytes below the exis—

ting address which will, itself, then
be altered to point to the low byte that has just been PUSHed. The stack has no
limits, so care must be taken not to PUSH below &BDF4 (&BES® if a Disc Drive is
fitted)., or above about &BF40 else the computer might crash.

The next five lines give the contents of the registers IY, IX, HL, DE and BC
as a word. In each case this is assumed to be an address and there follow the
contents of the eight bytes starting from this address and upwards. In practice
however, the register contents may not be an address or even a word (the HL, DE
and BC registers can normally be split into halves — so can the IY and IX regi-~
sters). In the display, the H, D & B registers occupy the high byte of the word
(ie the first half) while the L,E & C registers are the low bytes. The CPC's do
not readily support use of the alternate register set, and therefore no attempt
has been made to display their contents.

21

/(/)\

3

STEP PROGRAM

The seventh line displays the Accumulator and Flag registers:— the first byte
is A, the second F. The Flag register is then repeated in binary form (from bit
7 to @) with the relevant bits identified by the initial of their name when set
ie. 8ign, Zero, half carry, Parity (=overflow), n (=add/subtract), Carry. Those
signs, shown by lower case, cannot be tested and don't affect conditional Jumps
etc. The two bits that aren't used are present as spaces to provide proportion.

The final line of the display is the Program Counter. The address shown is
that of the next Machine Code instruction to be performed. This is followed by
the full complement of bytes which go to make up that instruction — either 1,2,
3 or 4. The bytes are in memory sequence, so addresses and words are presented
with the low byte first.

How to access STEF

This RSX is fairly simple and flexible to use but it has several different
ways of utilising it.
1. Sometimes a Program Counter address parameter will be entered & this should
immediately follow ISTEP. This then becomes the address of the next instruction
on the PC line. If this parameter is omitted, then the previous Program Counter
address will be retained (or &@Q00 will be used if this is the first time that
the RSX has been entered).
2. It is possible to enter values or addresses into any or all of the registers
via parameters. Each such entry must have two parameters :— The first must be a
value from 1 to 7 to identify the register required (1=AF, 2=BC etc up to 6=IY,
7=Stack Pointer). The second parameter will be the value or address required to
be loaded — remember that the H, D and B registers require values multiplied by
256 (whereas L, E and C do not). Theoretically this should also apply to the A
register but since this is much more frequently used than the F, the input for
this pair of registers has been reversed to normal, and only Flag bits must be
multiplied by 256.
3. A convenient way to utilise the register indentifying parameter would be to
assign values of 1 to 7 to the BASIC variables A, B, D, H, X, Y ard S - instead
of entering a value as the first of the pair, the variable could be substituted
in and thus making the sequence of parameters much clearer;

eg 5TEP,&B0®0,a,65,h,4C000, c,&4000,d, 44000
Note that, apart from the PC address parameter, the order of any other register
entries does not matter. The full syntax of the RSX is:

1STEP [,<{Program Counter address>] [,<list of: [{Register identifier value>,
<Register value>1ll

22

STEP PROGRAM

Once !STEP has been entered, only three keys will be effective and they are:

ESC

JUMP over the instruction at the Program Counter without performing it.

PERFORM the instruction and update any registers affected by it. However,
some instructions cannot be carried out due to the CPC firmware and these
will be jumped over as if 'J' had been used. Of those allowed, most inst-—
ructions (including all the 'illegal' ones involving halves of the IX and
IY registers) are performed normally, but a few are simulated — CALL, JP,
JR etc. CALL when the conditions allow it, is expected to RETurn from the

CALled routine to the instruction which follows; 1f it does not, the com—
puter may lock-up and then have to be reset.

to

return to BASIC. All registers etc are preserved for the next entry to

1STEP unless parameters are entered at that time.
ALL other keys presed will be displayed but no action will be taken.

It is often useful to precede a STEP command with a CLS to give an uncluttered
display. This was not incorporated in the RSX itself, so that any existing data
elsewhere on the screen could be retained if needed. Some instructions are not
performed at all and they are:— DI,EI,EX AF,AF’,EXX,HALT,IM @,1 OR 2, IND, INDR,
INI, INIR,LD with Interrupt or Refresh registers,0UTD,0TDR,0UTI,OTIR,RETI,RETN.

LIS TING

fF11
£781]
[EQ]
[541]
[4B1]
{211

441
[E6]

873

[EA]
[631
[AF]
£AS]
(131
{391
D13

10 *STEP-L.OADER copyright R Taylor 1989

20 MEMORY HIMEM-&440Q:RESTORE:PRINT:PRINT"Please wait a few seconds'

30 FOR 1in=0 TO &440/8-1:total=0:FOR n=1 10 B:READ a%

40 byte=VAL ("&"+a%) :POKE HIMEM+1ink8+n,byte

50 total=total+byte:NEXT n

&0 READ as:IF VAL ("&"+as)<>total THEN PRINT:PRINT"Error in line"linklo+110:
END

70 NEXT lin:IF PEEK(6)=%80 THEN POKE HIMEM+&30,8493:POKE HIMEM+&31,CA

80 PRINT:PRINT"All M/C loaded":PRINT:PRINT"Press ’S” to save M/C as STEP.BI
N'Y:WHILE INKEY$="":WEND: IF INKEY(60)<>-1 THEN a=HIMEM+1:8AVE "STEP.BIN",
B, a,&440

90 PRINT:PRINT"To Load and Initialise !STEP RS8X with a program present just
Enter:":PRINT"MEMORY HIMEM-844Q:a=HIMEM+1:L0AD"CHR$ (34) "STEP.BIN"CHRE (34
Y',a:CALL a":PRINT"in Direct Command Mode with the Disc or Tape inserted
at the correct place"

100 END

119 DATA 21,3F,03,19,3E,10,4E,23,13B

120 DATA 46,23,E5,D5,EB,09,4E,23,368
130 DATA 46,CB,BS,EB,E1,E5,09,EB,S6E
140 DATA 72,2B,73,D1,E1,3D,20,E6,405
15 DATA 01,34,80,EB,36,09,23,C3,365
160 DATA D1,BC,3E,05,0E,00,21,55,254

23

[DE]
[EZ2]
[DD1
[AD]
[F71
£ecl
[AE]
[1E3
{2B1]
471
LES]
[E&]
[121
{721
[441
{7@1
CFF3
L{oC3
£621
[8F1
foAl
[8E]
[2C3
CFC1]
[9E]
[oF1
1]
{D71
[?41
(e4]
[E3]
{B31
CDE]
£e81
(221
[DDJ
[841]
(oD1
313
(8F1
L3813
[E1]
£493
[1E]
£441

170
18¢
190

219

230
240

260
270

290

310
320

340
350
360
370

390

410
420
430

450
450
479
480
490

510
520
530
340
550
570
390

610

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

STEP

cB,C3, 18,00,07,83,FD, 21,351
2F,83,B87,28,34,47,0D,56,33F
01,DD,=E,09,05,28,30,3E, 107
©7,0D,96,02,FE,0b,38,05, 28D
20,08, 4A,53,59,3C,FD,ES, 40C
FD,23,FD,23,3D,20,F9,FD, 493
72,FF,FD,73,FE,FD,E1, DD, &9A
23,DD,23,DD, 23,00, 23, 10,333
CD,FD,S6,0F ,FD,5E, 0E, 1A, 382
13,FE, DD, 28, 41,FE,FD,28,47A
3D,FE,ED, 28,5€,21,5F,83,3B1
o1,4A,00,ED,B1,79,0E,01,271
20,6E,04,87,28,6A,04,FE, 2DD
06,38,65,04,FE,0R, 38,460,247
o4,FE,13,38,5B, 0E,03,FE, 287
25,38,55,04,FE, 29, 38,50, 265
FE,31,38,06,0D,04,FE,37,2B3
38,46,06,00,18,42,21,A9, 1A8
83,01,55,00, 1A,ED, B1,79,30A
01,01,02,20,33,01,02,07,061
B7,28,2D,06,00,FE, 36,38, 27E
27,0C,FE,S1,38,22,0C, 18, 200
1F,18,94,21,FE,83,01,3C, 260
09, 1A,ED,B1,79,01,01,02,235
20, 0E,0E,02,FE,05,38,08, 181
o6,00,FE,34,38,02, 06,04, 184
1B,FD,72,0F ,FD,73,0E,3E,355
1E,CD, SA, BB, DS, FD,ES,CS,57C
21,0D, 83, 0E,08,06,08,CS, 194
7e,23,B7,C4,5A, BB, 20,F8, 449
©6,02,3E,20,CD,5A, BB, CS, 30D
®6,02,FD,7E,01,5F , 0F ,0F , 201
oF ,0F ,E6, OF ,Cb,90,27 ,CE, 356
40,27,CD,SA, BB, 7B, 10,F2,3C6
c1,05,28,09,FD, 2B, 79,FE, 396
@2,20,0C, 18,D5,FD,23,C1,3CC
79,FE, 02,20, 16,3E,20,CD, 2DA
sA, BB, 7€, 23,CB, 03, 38,02, 2BE
3E,20,CD,5A, BB, 10,F3, 18,358
3F,18,MA,FD,56,01,FE,01,354
20,03,E3,45,E3,FE, 08, 20,354
o1,13,3E,20,CD,5A,BB,CS,319
06,02, 1A, 0F ,0F ,0F ,OF ,E6, 144
oF ,Cb,90,27,CE,40,27,CD,38E
5A, BB, 1A, 10,F2,C1,05,28,31F

L7F1
£471
[801
(10]
(381
D3]
[D21
{A41]
[301]
CA4]

FE]
£241
{223
LAF]
[681]
161
{e3]
[F2]
feC3

24

620
630
640
650
660
670

690
700
710

In Issue Three of Print—Cut, we

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

Linechedker

A PROGRAM TYPING AID

PROGRAM

oF,79,FE,©8,20,DB, 1B,CB, 36F
40,20,0C,13,13,13,18,D1, 25
3E,12,CD,5A, BB, 3E, A, CD, 347
sA, BB, 3E,@D,CD, SA, BB, FD, 43F
23,FD, 23,@D,20,AB,C1,FD, 309
E1,D1,3E,8F,CD,SA, BB, 3£, 49F
12,CD, SA, BB, 3E,@D,CD, 54, 366
BB,CD, @b, BB, FE,FC,C8,F6, 401
20,CD, SA, BB, Db, 34, 28, 04, 344
D&, 30,20,DE,47,EB,09,EB, 424

for use with PRINT-OUT

included a listing called 'Line-—
Checker' that produced codes for
every line of a program in order
to help eliminate typing errors.
The numbers that are printed in
square brackets at the beginning
of each line are the codes. They
should not be typed in & all the
programs will run correctly even

if

720
730
740
750
760
770
780
790

'Linechecker’

For full instructions on how to
use it, please refer to the ori-
ginal article in Issue Three.

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

is not used.

/

18,64,B8, 1A,CA,C2,82,05,361
28,23,05,28,EF,05,28,58, 1EF
0s,28,70,05,28,53,05,28, 144
1C,FE, DD, 20,08,FD, S6, 05,377
FD,SE,®4,18,41,FD, 56,03, 30E
FD,SE, @2, 18,39,FD, 56,07, 308
FD,=E,®6,18,31,FE, 18,28, 268
20,30,05,FD, 35,08, 18,0F, 1B9
FD, 4E,0C,FE,30,CB, 71,38, 3F9

{231
£1c3
=12k
(BD]
CAF]
£231
{BA3
[72]
LAS]
[CA]
571
{763
LEA]
fAB]
£SF1
[4B1]
{C11
£B&1]
[691]
[DE]
L1113
[F71
[35]
{701
LEF]
L4021
[EQ]
(281
£C61
943
[D31]
L6F]
{AB]
LF31
[6C1
£7C1
[D&]
[261]
Lc71
{791
[1D]
[EB]
[491
C7@31
[?0]
[3D3
[891
(331

STEP

810
820
830
840
850

DATA
DATA
DATA
DATA
DATA
DATA
DBATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

870

910

920

730

Q40

P50

60

970

280

@20

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1199
1200
1210
1220
1230
1240
1250
1260
1270
1280

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

02,CB,41,28,08,CB,5F , 20,268
08,13,13,18,11,CB,5F,20, 1Al
F8,13,1A,13,FE,80,38,01, 26F
15,83,5,30,01,14,C3,77,276
80,13,13,13,FD,66,01,FD,31A
&E,00,2B,72,2B,73, 16,00, 1BF
E6,3F,5F,FD,74,01,FD, 75,468
00, 18,E3,CB, 4F , 20,04,CB, 304
s7,28,02,13,13,13,CB, 47, 1CC
20,23,FD, 4E,@C,FE, D@, CB, 433
71,38, 0€,FE,E0,CB, 41,38,3D9
e8,FE,F0,CB,51,38,02,CB,417
79,28, 06,CB,5F, 20,06, 18, 20F
BS,CB,5F,20,B1,FD,66,01,414
FD, &E,00,CB, 4F, 20, 05,08, 37E
57,28,11,28,72,28,73,FD,2C8
74,01,FD,75,00,E8, 2B, 56,353
2B, 5E, 18,92, 5E, 23,56, 23,22D
18,A1,21,EA,82,EB, 3E,05,374
91,ED,B0,EB, 3D,28,04,70,3F2
23,18,F9,DS,FD,ES,F3,ED,SCB
73,2D,83,31,31,83,FD,E1,3E6
op,E1,£1,D1,C1,F1,ED, 7B, 58A
2F,83,00,00,00,00,ED,73,212
2F,83,31,3D,83,F5,C5, 05,432
ES,DD,ES,FD,ES,ED, 7B, 2D,61E
83,FB,FD,E1,D1,18,59,53,528
54,45, D0, 00,00,53,50,00,20C
49,59,00,49,58,00,48,4C, 107
00,44,45,00,42,43,00,41, 14F
46,00,53,5A,20,68,20,50, 1EB
&E,43,50,43,00,00,00,00, 144
BF, 00,00, 00,00,00,00,00,0BF
20, 00,00,00,00,00,00,21,021
00,34,00,33,00,86,00,BF, 1B1
00,E4,00,11,01,ED,01,C3,2A7
02,09,02,DC,02,E8,02,F0,395
02,F3,02,FF,02,4F 02,06, 24F
0k, 16, 1E,26,2E,36,3E,C6, 1D0
CE, D&, DE,E6,EE,F6,FE,D3,71D
DB,CB, 10, 18,20, 28,30, 38, 27E
01,11,21,22,2A,31,32,3A,11C
cF,D7,DF ,EF,C3,C2,CA,D2,695
DA,E2,EA,F2,FA,CD,C4,CC, 6EF
p4,DC,E4,EC,F4,FC,C9,C0, &F9
cs, Do, D8,E0,E8,F0,F8,C7,6E7
€7,F7,FF,08,09,F3,FB, 76,622
E9,21,22,2A,36,26,2E,46,226

25

PROGRAM

[AE]
[311
{751
(DB1
[411
[02]
(BB
£D11
[(8B]
£B31]
[191]
[D&]
321
[661
C1C1
£7B1
{811
LAF1]

1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

4E,56,5E, 6b,6E,7E,70,71,335
72,73,74,75,77,86,68E,96,3EF
9E,Ab,AE, Bb,BE,34,35,23,3F2
2B,E5,E1,09,19,29,39,E3,358
Fo,24,25,2C,2D,84,85,8C,330
8D,94,95,9C,9D,A4,AS,AC, 4E4
AD, B4, BS,BC,BD, 44,45, 4C, 464
4p,s4,55,5C,50, 64,65, 6C, 264
6D,7C, 7D, 60,61 ,62,63,67,353
68,69,60,68,6F,E9,43,4B,38C
53,58, 63, 68,73, 7B, 42, 4R, 2F6
52,50, 62,60,72,7A,40,41 , 265
48,49,50,51,58,59,60,61, 204
68,69,70,71,78,79, 4F ,5F,351
47,57,BB,AB,BA, AA, B3,A3, 4BE
B2,A2,47,4F,44,B9,A9,B8, 468
AB,B1,A1,B0,00,45,46,4D,422
56,SE, 00, 00,00, 00,00, 00,084

r

\.

2

MiP Software

SHAREWATCHER II - a superb stockmarket simlation
which allows you to test your skills on the stockmarket without
losing a fortune!! '...interesting and enjoyable...’ said Printout
issue 3. '...well worth considering.’ said WACCI Dec’89.
Sharewatcher 11 costs £4.50 on tape and £7.50 on 3" disc.

MATHS MASTER PLUS - is a comprehensive computer
utility packed with well over 100 useful formulae and conversions.
It is simple to operate and is based around two main menus.Included
in the program are sections on volumes, areas, statistics, physics
formulae, trig and much more. Just type in the figures you know,
and the answer will be provided in seconds - its invalable for ell
students. '...excellent buy...’ said Printout issue 2. ..ol
yritten..... useful...’ said A.E.M. Naths Haster Plus costs £3.95
on tape and £6.95 on 3" disc.

EDUCATIONAL PACK 1 ~— this pack contains ten
superb educational programs to suit ages §-14.411 the programs have
a mathematical theme to them, and are simple to use, although an &4
manue] is included in the price.The prograns included are fracions,
ratios, series, addition and subtraction, and meny meny more. Also
for a linited period & copy of Maths Master will be given free.This
progran is the predecessor to the Maths Master Plus program shown
above. This is superb buy at £5.95 on 3" disc or double tape pack.

To order please send a cheque or postal order (payable to .Pinder)
to ¥iP Software, 4 Whan Hey, New Longton, Preston, PR4 4XU.

ADVANCED BASIC - ERRORS TUTORIAL

Advanced Basic 44
Why errors can be FUN

Every programmer in BASIC, unless they're very lucky or extremely talented,
will have seen at some time an error message such as the common 'Syntax Error'
or. even worse. the 'Unexpected RETURN'.

Seriously though, when any error is encountered in a BASIC program a complex
and precise procedure is followed by the BASIC interpreter. There are four main
error commands and they are ERR, ERL, ERROR and ON ERROR GOTO. However on a 664
or 6128 there's an additional command. DERR, which handles all disc errors. For
now, we will be concerned only with the four instructions that exist on all the
CPCs. Before we look at any examples of 'error trapping', we need to know what
each of the above commands does. In fact, both ERR and ERL are not commands but
actually variables that are looked after by the computer itself. When an error
occurs, the number of that errcr is stored in the variable ERR — you can find a
list of all the error numbers and also what they represent at the back of youw
manual. For example, type in this line :—

190 READ a%
Now run this short program and the message 'DATA exhausted in 10’ is printed in
order to inform you that no new data is available to be read. If you now enter:
PRINT ERR
The number '4' should appear arxd if we look this up in cur manual we find that
this signifies that the DATA has been exhausted. ERL is also a variable and it
holds the line number in which the last error occured. So type :—
PRINT ERL
The number '10' now appears & this tells us that the error happened in line 10.

If you were writing a program that involved setting both the PEN & PAPER to
bright magenta, it would be sensible to add a few lines to the program so that
whenever an error occured, the screen would be set to a some sensible colouwrs &
an indication of the error & its location would be given. The program below is
an example of this :—

10 ON ERROR GOTO 1000
20 INK 1,8:INK 0,8
30 FOR i=1 70 3
999 END
1000 REM Ervor trapping routine
1010 MODE 2:INK 1,24:INK 0,0:PEN 1:PAPER ©
1020 PRINT "ERROR";ERR;"in line":;ERL
1030 PRINT:LIST

26

ADVANCED BASIC - ERRORS TUTORIAL

When run, the program tells you that there is ERROR 26 in line 30 — FRROR 26
refers to a NEXT instruction being missing. The actual error trapping routine
is contained in lines 1000-1030 and line 10 sets this up by saying that as soon
an error is encountered the program must go to line 1000.

Another use of the error commands is so that the user can customise his own
error messages. One way to do this is to send the program off to an error trap—
ping routine by using the ON ERROR GOTO command, see if ERR equals a particular
value & then take the appropriate action. This short program demonstrates this
point.

10 ON ERROR GOTO 1000

20 MODE 2

30 INPUT "Please enter a number :— ",a
40 PRINT "The number is':a

50 GOTO 30

1000 REM Ervor trapping routine
1010 IF ERR=6 THEN PRINT "The number is too long"
1020 RESUME

When any error occurs the program automaticlly goes to line 1000 where the ERR

value is compared with 6 and if they are equal (ie ERROR 6 has taken place) the
message is printed & the program then RESUMEs execution. If there was any error
other than 6 (overflow), the program would have RESUMEd execution as if nothing
had happened. In order to force an error to occur in this program, you need to

enter a number of more than about 80 digits !! Of course, as your program grows
bigger and more complex you may need further error messages to be incorporated

into the 'Error trapping routine'.

In the above program, we met yet another new command, RESUME. This command
tells the computer where to restart the program from after it has dealt with
the error. There are three forms that RESUME may take and they are :—

a) RESUME - tells the computer to restart from the same line that caused the
error. Often this will be result in the error recurring but in the above
example it does not.

b) RESUME NEXT - tells the computer to restart from the line following that
which caused the error (eg. in the above program RESUME NEXT would send
the computer to line 408 as it was line 30 that caused the error).

¢) RESUME <line number> — tells the computer to restart from the line number
which follows the RESUME (eg. RESUME 100 restarts at line 100).

S0 far we have locked at how to work out which error occured and where & how
to alter an existing error message. However, there is another thing that we can
do using the various error commands that are provided by BASIC — we can design
owr own errors !!! You may well think that you have enough constraints in BASIC
without inventing more yourself. Rest assure that these 'home-made' errors are
meant only to be helpful and not restrictive. In BASIC, the errors from 1 to 30
are reserved by the Operating System. However all the errors from 31 to 255 are

27

ADVANCED BASIC - TUTORIAL ERRCRS

available for our own use. The way to operate your own 'error messages' is to
have some instruction that decides whether your own personal error has occured
and if it has then it should invoke the error using the command, ERROR. (To see
ERROR in action, just type ERROR 8 and the computer will react exactly as if a
line really did not exist.) When an error is invoked, it is picked up by an ON
ERROR GOTO command which immediately sends the computer to the 'Exror trapping
routine'. Here, the program checks to see if the error that occured matches any
of the ones that it has been programmed to interpret. As soon as any necessary
actions have been carried out the program restarts execution at the point which
you tell it to, using the RESUME command.

The program listed below is a demonstration of a simple parsing routine. In
it three error messages are defined (errors 50-52) and these are executed when
certain conditions concerning the entering of words are met.

1@ REM Simple Parser Demo

ON ERROR GOTO 1030

PRINT "Please enter your next command."

INPUT "2>>> ", words

knows="CL IMJUMPPULLPUSHL_IFT"

where=@

@ words=LEFT$ (UFPERS (word$))

IF words="" THEN ERROR 50

IF LEN(words$) >10 THEN ERROR S1

100 where=INSTR (knows, words$)

110 IF where=0 THEN ERROR S2

120 where=INT (where/4)+1

130 ON where GOSUB 1000, 1010, 1020, 1030, 1040

149 GOTO 30

1900 PRINT "You start to climb the rope but fall.":RETURN

1019 PRINT "You try and jump onto the ledge but you can’t reach it."”:RETURN
1020 PRINT '"You pull at the rope and it unties itself.'":RETURN

1030 PRINT 'You push the rock towards the cliff face.":RETURN

1049 PRINT "The rock is too heavy to lift.'':RETURN

1050 REM Error trapping routine

1060 IF ERR=50 THEN PRINT "I'm afraid that you didn’t enter anything."
1070 IF ERR=51 THEN PRINT "I'm very sorry but that word is too long."
1080 IF ERR=52 THEN PRINT "I dorn’t know that word. Please use another one."
1090 RESUME 3@

E§88§E8N

~

88

In this program, whenever word$ is empty FRROR 5@ occurs (line 80) and this
causes the ON ERROR GOTO command (line 20) to make the computer go to line 1050
where the ERR number is checked and the appropriate message is printed before
execution is retuwrned to the main program at line 3@ (RESUME 30). The other two
errors (invoked in lines 9@ & 110) also follow the same path & they too rejoin
the main program at line 30. That concludes this section on error messages and
their uses which can be of the greatest assistance whilst programming.

28

BUBBLE SORT

A Sorting Routine for use in your PROGRAMS
by BOB TAYLOR

The sort routine that is the subject of this article is intended as a module
to be used in a Machine Code database program. Before embarking on such a list—
ing, 1t is necessary to have decided on the form which the Database will take &
especially on the way that data will be stored.

The unit of data is said to be the 'record' (equivalent to a card in a card
index system) which will contain a number of related details such as the Name,
Address, Phone No etc.

In a database, each of these details is stored in a separate 'field' & these
will be linked together by the program. Although each record's fields could be
stored with other like fields. it is more common to have all the fields for one
record grouped together. Further to this, all the records are usually arranged
sequentially in the same block of memory. To best utilise the somewhat limited
memory in the CPC, variable length of fields (and therefore of records too) is
needed in order to eliminate the unfilled bytes that result from using a system
of fixed length fields which, of necessity, must be made large enough to cope
with any eventuality.

Since the length of a field cannot be predicted, some way is needed to indi-
cate its start and finish. To acheive this, a byte of low value (which would
never occur in a field proper) is used at the start of each field; if the bytes
are identical for the same field in each record then they can also act as field
indicators. Thus for each record a series of bytes, which start at &80 for the
first field, &¥1 for the next etc, is utilised as field separators. As can be
seen the byte value is one less than the field number, with the first separator
(8&00) doubling as a start of record indicator also. To further assist with rec—
ord management, double bytes of &@@ are present both before the first record in
the list and after the last so far entered. Thus a record starts at a byte of
&@0 and consists of the required fields with separator bytes between; it ends
just before the byte of &2@ which starts the following record.

Since a byte of &20 (32 decimal) represents a space (which may appear in any
field), the maximum number of fields is limited to 32 (@ to 31), although if it
is required to use Line Feed and Carriage Return characters (&0A and &@D respe—
ctively) in a field, the number drops to 10.

There many different methods of performing a sort. some faster than others.
Unusually, the simplest methods do not work out to be the fastest. However, the
more sophisticated ones require to work on specific records throughout the list
— since we have elected to use variable length records, the positions of these
records cannot be predicted and we are forced to go for one of the simpler rou—
tines usually called 'bubble sort' which works on adjacent records. It is given
its name because records sort of 'bubble’ to the required position in the list.

29

BUBBLE SCRT PROGRAM

The version given here has been streamlined to eliminate the usual intermediate
swapping of records and multiple passes through the list. It works as follows:
1. Starting with the first two, adjacent records are compared and if in the

correct sequence, the higher of the pair plus the one above that are then
compared.

2. This comparison of pairs is continued either until the top of the list is
reached when the sort is complete, or until the upper one of a pair should
actually be lower than it is.

3. When this latter occurs, this upper record is compared with each of those
below it either until the bottom of the list is met or until a record is
found which should not be above the upper one.

4. At this point, the upper record is sent to a buffer, the block of records
which it should be below is moved up to where it was and the 'upper' rec-
ord is then transferred from the buffer to just below the moved—up block.

5. The comparison of adjacent pairs is resumed with the highest one moved up
to take the old upper one's place and the one above that.

6. At any point reached in the list, all records below those being compared
will be in the correct order.

It is possible to sort using any field in the records (eg by Name or Town) by

loading the sort variable FLDNUM with the number (minus 1) of the field in the
sequence of fields in the record. Of course sorting one field causes the other
fields to become unsorted as they are moved about with the record in the sort.

It is also possible to perform a reverse sort by loading the sort variable
DIRFLG with anything other than @. A reverse sort is used to put numbers into
descending order. Whenever it is required to sort numbers, care must be taken
to pad small numbers with the requisite number of leading spaces — failure to
do so could lead to a number like 1000 appearing to be less than 99 because 1
is less than 9.

The relative slowness of the bubble sort can be alleviated to some extent by
performing a sort after each new record is added to the list — a list which is
nearly in the correct order is quicker to sort. To this end there is usually a
sorted sequence (eg by Names alphabetically) which is most desirable and which
will be retained most of the time. Other sequences will be required much less
frequently.

After entering and running the Sort Loader program, a simple demonstration is
given with a list of ten records, each having three fields, being generated and
displayed. You will be prompted for a field number (1 to 3) and the list sorted
and displayed again. This can be repeated as many times as you like. If &A578
is POKEd with a value other than @, reverse sorts can also be demonstrated on
re-RUNning from line 21@. As should be seen, even empty fields can be handled:
they are treated as less than fields containing characters. If no empty fields
appear as the program is running, try ESCaping and RUN 210 until they do.

30

BUBBLE SCRT PROGRAM

LIS TING

{F11
{2C1]
£2B1]
C1E]
[4B]
(981

tc41]
471

[EF]

(A1l
[C41

£Ccael
£22]

£e71
DAl

[6B3
[AC]
(281
£4D1
[341
4C1
(E@]
£231
(FB1
{C31
£32]
CE2]
[29]
£ec1
[571
L[CD3
{9e1]
[111

10

§88ES

8 8

90

*SORT-LOADER by R Taylor for PRINT-OUT (copyright 1990)

MEMORY &BFFF:RESTORE: PRINT:PRINT"Please wait a few seconds'

FOR 1in=0 TO &90/8-1:total=0:FOR n=1 TO 8:READ a%

byte=VAL ("&"+a%$) :POKE &AS/77+1inx8+n,byte

total=total+byte:NEXT n

READ a%$:IF VAL ("&"+a$)<>total THEN PRINT:PRINT"Error in line"linkl@+160
:END

NEXT lin

PRINT:PRINT"Al11l M/C loaded":PRINT:PRINT"POKE &A577,<Field Number-1>":
PRINT"POKE &A578,0 (for Normal Sort) or 1 (for Reverse Sort)"
PRINT:PRINT"Code is located at &A577 and is &8B bytes long with entry
at &AS80"

100 %% DEMONSTRATION %X
110 POKE &9000,0:ADDR=FQQ1:FOR r=1 TO 10:FOR =0 TO 2:POKE addr,f:addr=

addr+1:FOR c=t TO RNDXP:POKE addr,65+25%RND: addr=addr+1 :NEXT c:NEXT f:
NEXT r:POKE addr,0:POKE addr+1,0

120 addr=&9001:r=11
130 c=PEEK(addr) :addr=addr+1:IF c=0 THEN PRINT:r=r—-1 ELGE IF <10 THEN

PRINT,ELSE PRINT CHRs(c);

140 IF r GOTO 130
150 PRINT: INPUT"Sort by Field No ";n:IF ndl OR n>3 GOTO 130 ELSE POKE

&AS77,n—1:CALL &ASB0:60TO 120

160 DATA ©0,00,00,00,00,00,00,00, VB
170 DATA 00,21,01,90,54,5D,AF,06, 218
180 DATA FF,23,ED,B1,BE,C8,2B,22, 493

190 DATA 7D,AS,EB,3C,32,7F,AS,22, 3C1

200 DATA 79,A5,3A,77,AS,ED,B1,EB, 4FD /
210 DATA 2A,7D,AS,ED,B1,3A,78,AS, 441 | I n
220 DATA B7,28,01,EB, 1A,FE, 20,38, 33B L I
230 DATA 1E,CB,EF,4€E,CB,E9,B9,38, 4CB

240 DATA 16,20,04,23,13,18,ED,2A, 19F === ==

250 DATA 79,AS,22,7B,AS,2B,AF,BE, 3FS
260 DATA 28,09,ED,B?,23,18,C5,3A, 311

‘270 DATA 7F,A5,B7,2A,7D,A5,20,AC, 3F3

280 DATA 23,E5,ED,B1,D1,ED,52,44, 4FA
290 DATA 4D, 19,2B,ES,11,76,A5,C5, 367
300 DATA DS,ES,ED,BS,ED,SH,7B,AS, SC7
319 DATA ED,S2,44,4D, 19,D1,ED,B8, 45F
320 DATA E1,C1,ED,BS,E1,2B,ED,B9, SF9
330 DATA 23,18,81,00,00,00,00,00, ©BC

Over the page there is the disassembly of the machine code that is contained
in this routine and it shows the workings of the program in greater depth.

31

BUBBLE SORT PROGRAM

botstt EQU £9881 ;start of bottoa record. IC OE ;to next chars of both records.
Dbuttop QU &AS76 ;top byte of buffer. JR nxtchr
.setaov
ORG &ASTV ID HL {lwrstt) ;include lover record -
.fldnua DEFB £00 ;field number - 1. 1D (blkstt),HL ;in those to be moved.
.dirflg DEFB £08 ;direction flag: 8=Normal Sort; (8=Reverse. DEC HL ;step down to last byte of next lowver record
lvrstt DEFS 2 ;start of lower of 2 records being compared. ;or to Start of Records byte (£68).
.blkstt DEFS 2 ;start of block to be poved upvards. IR A ;8 to look for £88 byte.
Juprstt DEFS 2 ;start of upper of 2 records being compared. CP(HL)
.povilg DEFS 1 ;pove flag: 1=no move; B=pove required. JRZ.nove ;if Start of Records byte then no sore to
;check downwards.
.sort CPDR :othervise find start of record below.
1D HL botstt ;start at bottom of records. INC HL ;HL > start of new lover record.
.axtup JR nxtdwn ;to store 8 in sove flag (= nove).
D DR . chknov
b EL :DE -> lover record start (LWRSTT) 1D A (movilg)
IR A ;8 to look for start of next record upvards. 11/ ;Zero 1f pove flag already set.
1D B&FF ;nake BC large enough for all CPIRs etc. .aove
I HL ;HL ~) 1st char of lower record. 1D HL {uprstt) ;collect UPRSTT for NXT UP or HOVE proper.
CPIR :HL > next record st char or Top of R NZ,netup ;1f no pove required.
;Records byte {(£00). I L ;ML -> 1st char of upper record.
P (HL) ;Zero if at top of records. PUSH HL ;= {1} URRSTT + 1
RET Z sfinished if at top of records. CPIR ;HL =) next higher record start + 1.
I HL ;HL -> start of next/upper record {UPRSTT}. PP DE ;UPRSTT + 1 (@)
1D (uprstt) H. ;store. SBC ML, DE ;HL = UPRLEN (upper record length).
K IEH ;HL -> LWRSTT. 1D BH
INC A ;5ignal ‘no pove yet'. b ClL ;BC = UPRLEX.
.axtdwn AD HL,DE ;HL - next higher record start + 1.
1D {movflg},A ;store move flag. DIC HL :HL - next higher record start (WXTSTT).
1D (lwstt) i ;store. PUSH HL ;=2 (1) NXTSTT
I} A (fidoum) :get field number - 1. LD DE buftop :DE -> huffer top byte.
CPIR JHL -) st char in lover required field. PUSH B ;= (2) UPRLEN
B DEH QE- " T ' v PUSH DE ;= (3) BUFTOP
1D HL, {uprstt) PUSH HL ;=) (4) NXTOTT
CPIR ;HL - 1st char in upper required field. LODR stransfer upper record to buffer; HL -
1D A (dirflg) ;get direction flag. ;upper record start (UPRSTT).
R A ;Zero if Normal Sort. ID DE (blksttj ;DE -> start of lowest record to be woved.
JR Z,nxtehr ;if Normal then lover record should be SBC HL,DE ;HL = BLKLEN (length of block to be moved).
; inferior (to upper]. D BH
B DEHK ;othervise Reverse so upper record should be I CL ;BC = BLKLEN.
;inferior (to lower). AMD HLDE ;HL - UPRSTT.
nxtchr Pop DE ;NXTSTT (3)
1D A (DE) ;get 1st/next char from inferior record. LR ;transfer block of record(s} upwards to
(P 620 ;field separators have values ¢ £20. scover old upper record; HL -) new BLKSTT
; (=old BLKSTT + UPRLEX).
JR C,chkeov ;if field separator then inferior field has POP HL ; BUFTOR (2)
;ended; ie is less or equal so no move. PP K ; UPRLEN (1)
SET 5,A ;convert inferior's char to lowver case. LDOR ;transfer upper record frow buffer to below
Iy € (H) ;get 1st next superior record char. ;new BLKSTT.
SET 5.C ;convert this to lower case. PP HL ;NXTSTT (9)
¢ C ;conpare both record’s chars. DEC HL ;ML -> last byte of nev upper record.
JR €, chkrov :1f inferior is lesser them don't move this CPOR ;find start of record which has taken the
; lover record, but check vhether others need ;place of the old upper record.
;pOving. INC HL L -> start of new upper record.
R NZ,setwov ;1f inferior is greater then it will require R nxtup ;every record below this point is sorted so
;oving. ;g0 on to conpare this new upper record vith
INC HL ;othervise if equal then step on - ;the one above.

32

[4B3

(321

[991]

{DB1]

£601
[AS]

L7C3

{271

[AE]

{841

{A?]

[3A]

[Fe1

[801

£s83

101

£133

[B71

[3E1

[161]

CEB]

(FE3]

[4A]

{CD1]

(A1l

[20]

£AO1

LEB]

[&ED

SEA
BATTLE

PROGRAM

cant. from page 1B

1140 IF cd=0 THEN RETURN ELSE IF cd=1 THEN sd=sd+1:FOR a=1 TO 1130:NEXT:IF sd<5 THEN

RETURN ELSE IF sd=5 THEN GOSUB 1160

1150 IF cd=0 THEN RETURN EL.SE IF cd=1 THEN sm=sm+1:FOR a=1 TO 1000:NEXT:IF sm<S THEN

RETURN ELSE IF sm=5 THEN GOSUB 1170

1160 LOCATE 5,5:PEN 7:PRINT s$;" WIN';:6G0SUB 1320:L0CATE 5,8:PEN B:PRINT"Press any

key":6G0TO 1180

1170 LOCATE 5,5:PEN 7:PRINT qg%;" WIN";:608UB 1320:L0CATE 5,8:PEN 8:PRINT"Press any

key':GOTO 1180

1180 k$=INKEYS$:IF k$=""THEN 1180:ELSE MODE O:WINDOW 3,17,8,25:PEN 10:6G0T0 30

1190 IF c$="al"AND cd=1 THEN TAG:G0SuUB
—-32,-15:PRINT is$;: TAGOFF

1200 IF c$="a2"AND cd=1
MOVER —31,-16:PRINT is;
1210 IF c#="a3"AND cd=1
MOVER —-31,-16:PRINT is$;
1220 IF c$="ad4"AND cd=1
MOVER -31,-16:PRINT i%$;: TAGOFF

1230 IF c$="aS"AND cd=1 THEN TAG:GOSUB
MOVER -35,-16:PRINT is$;:TAGOFF

1240 IF c$="bl1"AND cd=1 THEN TAG:GOSUB
~32,~15:PRINT is;:TAGOFF

1250 IF c$="b2"AND cd=1
MOVER —-31,-16:PRINT is$;
1260 IF c$="b3"AND cd=1
MOVER -31,-16:PRINT i%;
1270 IF c$="b4"AND cd=1
MOVER —-31,-16:PRINT is$;
1280 IF c%="b3"AND cd=1
MOVER -35,-16:PRINT is$;
1290 IF c$="cl"AND cd=1
~32,~-15:PRINT i$;:TAGOFF
1300 IF c$="c2"AND cd=1
MOVER —-31,-16:PRINT is;
1310 IF c$="c3"AND cd=1
MOVER —31,~-16:PRINT i%$;:TAGOFF

1320 IF c$="c4"AND cd=1 THEN TAG:GOSUB
MOVER -31,-16:PRINT is$;:TAGOFF

1330 IF c$="c5"AND cd=1 THEN TAG:GDOSUB
MOVER —-35,-16:PRINT i%;: TAGOFF

1340 IF c$="d1"AND cd=1 THEN TAG:GOSUB
-32,—-15:PRINT i%$;:TAGOFF

1350 IF c$="d2"AND cd=1
MOVER -31,-16:PRINT is;
1360 IF c$="d3"AND cd=1
MOVER -31,-16:PRINT i%;
1370 IF c$="d4"AND cd=1
MOVER -31,-16:PRINT i%;
1380 IF c$="d3"AND cd=1
MOVER -335,-16:PRINT i%;
1390 1F c%="el"AND cd=1
—-32,-15:PRINT i$;: TAGOFF

1400 IF c$="e2"AND cd=1 THEN TAG:GOSUB
MOVER —31,~-16:PRINT i%$;: TAGOFF

1410 IF c$="e3"AND cd=1 THEN TAG:G0OSUB
MOVER -31,-16:PRINT i%$;: TAGOFF

1420 IF c$="e4"AND cd=1 THEN TAG:GOSUB
MOVER -31,-16:PRINT is$;:TAGOFF

THEN TAG:GOSUB
: TAGOFF
THEN TAG:GOSUB
s TAGOFF
THEN TAG:GOSUB

THEN TAG:GOSUB
: TAGOFF
THEN TAG:GOSUB
: TAGDFF
THEN TAG:G0OSUB
: TAGOFF
THEN TAG:GOSUB
: TAGOFF
THEN TAG:GOSUB

THEN TAG:GOSUB
s TAGOFF
THEN TAG:GOSUB

THEN TAG:GOSUB
: TAGOFF
THEN TAG:GOSUB
: TAGOFF
THEN TAG:GOSUB
: TAGOFF
THEN TAG:G0OSUB
: TAGOFF
THEN TAG:GOSUB

33

1440:PLOT

1440:PLOT

1440:PLOT

1440:PLOT

1440:PLOT

1440: PLOT

1440:PLOT

1440:PLOT

1440: PLOT

1440:PLOT

1440:PLOT

1440:PLO0T

1440:PLOT

1440:PLOT

1440:PLOT

1440:PLOT

1440: PLOT

1440:PLOT

1440: PLOT

1440: PLOT

1440:PLOT

1440:PLOT

1440: PLOT

1440:PLOT

49,193,10:MOVER 6,0:PRINT 1%$; :MOVER
104,179,10:MOVE 93,192:PRINT 1%;:
144,179,10:MOVE 134, 192:PRINT 1$;:
169,179, 10:MOVE 174, 192: PRINT 1%;:,
215,179, 10:MVE 215, 192:PRINT 1$;:
49,157,10:MWVER 6,0:PRINT 1%; :MOVER
49,157,10:MOVE 93, 158: PRINT 1$;:
144,157,10:MOVE 134, 158:PRINT 1%$;:
169,157, 10:MOVE 174, 158:PRINT 1$;:
215,157, 10:MOVE 215, 158: PRINT 1$;:
49,122,10:MMVER 6,0:PRINT 1$; :MOVER
104,122, 10:MVE 93, 122:PRINT 1$;:
144,122,10:MVE 134, 122:PRINT 1$;:
169,122, 10:MOVE 174, 122:PRINT 1$;:
215,122, 10:MOVE 215, 122:PRINT 1%;:
49,87,10:MOVER 6,0:PRINT 1%; :MOVER
104,87, 10:MOVE 93,87:PRINT 1$;:
144,89, 10:MOVE 134,89: PRINT 1$;:
169,89, 10:MOVE 174,89:PRINT 1%;:
215,89, 10:MOVE 215,89:PRINT 1$;:
49,53, 10:MVER 6,0:PRINT 1$; :MOVER
104,53, 10:MVE 93,53:PRINT 1%;:
144,53, 10:MVE 134,53:PRINT 1%;:

169,53, 10:MVE 174,53:PRINT 1%;:

{BC1

[oC1
£743

871
[33]
LOE]
£4D3
F713
[FA3
£A2]
113
[2A]
LDC3
[&633
£3B3
[423
[E13
[921
£191
[F113
£8Dh3
{C11
[6C1
LF33
Bl
t7D]
[?E3
D33
3813
[2C3

[O&]

{403

SEABATTLE

PROGRAM

1430 IF c%="e5"AND cd=1 THEN TAG:GOSUB 1440:PLOT 215,53,10:MOVE 215,53:PRINT 1%;:

MOVER —~35,-16:PRINT is$;: TAGOFF : RETURN

1440 FOR a=250 TO 2 STEP -S5:S0UND 130,a+10, 1, 15:NEXT: RETURN
1450 FOR 1=1 TO 1 STEP -3:FOR =800 TO 160 STEP -25:S0UND 1,f,1,15,1,1:NEXT:NEXT:

1%2,15,1, 1:NEXT:NEXT: RETURN
49,193,10:MOVER 6,0: :PRINT o$;:

104,179, 10:MOVE 93, 192: PRINT o$;:
144,179,10:MOVE 134, 192:PRINT 0$;:

169,179,10:MOVE 174, 192:PRINT o$;:

RETURN
1460 FOR a=200 TO 50 STEP-8:S0UND 130,a+10,5, 15:NEXT: RETURN

1470 FOR a=1 TO 1000:NEXT:RETURN

1480 SOUND 1,400:RETURN

1490 SPEED INK 8,15:LOCATE 12,19:PEN 7:PRINT CHR$(22)+CHR$ (1) 3 :PRINT"X"; :PEN 1:RETURN
1500 LOCATE 12, 19:PRINT"X" :WINDOW#Z, 13,16, 19, 19: PAPER#2, 3: RETURN

1510 LOCATE 12, 19:PRINT" X" :WINDOWH#2, 13, 16, 19, 19: PAPER#2, 3: RETURN

1520 FOR a=1 TO 200:SPEED INK 5, 15:SOUND 130, a,10,15: BORDER 26:BORDER 14:NEXT:FOR 1=
1 TO 1 STEP -3:FOR =100 TO 10 STEP -1:SOUND 1,,

1530 IF c$="al"AND cd=0 THEN TAG:GOSUB 1450:PLOT

MOVER —32,-15:PRINT m$; : TAGOFF

1540 IF c$="a2"AND cd=0 THEN TAG:GOSUB 1450:PLOT

MOVER —-31,-16:PRINT m$;: TAGOFF

1550 IF c$="a3"AND cd=0 THEN TAG:GOSUB 1450:PLOT

MOVER —31,-16:PRINT m$; : TAGOFF

1560 IF c$="a4"AND cd=0 THEN TAG:GOSUB 1450:PLOT

MOVER —31,-16:PRINT m$;: TAGOFF

1570 IF c$="a5"AND cd=0 THEN TAG:GOSUB 1450:PLOT

MOVER —35,-16:PRINT m$;: TAGDFF

1580 IF c$="b1"AND cd=0 THEN TAG:G0OSUB
—-32,~15:PRINT m$; : TAGOFF

1590 IF c%="b2"AND cd=0 THEN TAG:G0OSUB
MOVER —-31,~-16:PRINT m$;: TAGOFF

1600 IF c$="H3"AND cd=0 THEN TAG:GOSUB
MOVER —-31,—-16:PRINT ms;: TAGOFF

1610 IF c$="b4"AND cd=0 THEN TAG:G0OSUB
MOVER —31,—16:PRINT m$; : TAGOFF

1620 IF c$="b5"AND cd=0 THEN TAG:GOSUB
MOVER -35,~16:PRINT m$; : TRGOFF

1630 IF c$="cl1"AND cd=0 THEN TAG:G0OSUB
-32,—13:PRINT m$;: TAGOFF

1640 IF c$="c2"AND cd=0 THEN TAG:G0SUB
MOVER -31,-16:PRINT m$;: TAGOFF

1630 IF c$="c3"AND cd=0 THEN TAG:GOSUB
MOVER —-31,~1&6:PRINT m$;: TAGOFF

1660 IF c$="c4"AND cd=0 THEN TAG:GOSUB
MOVER —31,-16:PRINT m$; : TARGOFF

1670 IF c$="c3"AND cd=0 THEN TAG:BE0SUB
MOVER —35,-16:PRINT m$; : TAGOFF

1680 IF c$="d1"AND cd=0 THEN TAG:G0OSUB
~32,—~15:PRINT m$;: TAGOFF

1690 IF c$="d2"AND cd=0 THEN TAG:GOSUB
MOVER —31,-16:PRINT m$;: TAGOFF

1700 IF c#$="d3"AND cd=0 THEN TAG:G0SUB
MOVER —31,-16:PRINT m$;: TAGOFF

1710 IF c$="d4"AND cd=0 THEN TAG:GE0SUB
MOVER —-31,-16:PRINT m$;: TAGOFF

1720 IF c$="d3"AND cd=0 THEN TAG:G0OSUB
MOVER -35,-16:PRINT m$;: TAGOFF

1730 IF c$="el"AD cd=0 THEN TAG:GOSUB
~32,~15:PRINT m$; : TAGOFF

1740 IF c$="e2"AND cd=0 THEN TAG:G0SUB
MOVER -31,-16:PRINT m$;: TAGOFF

1450:PLOT
14350:PLOT
1450: PLAT
1450:PLOT
1450:PLOT
1450:PLOT
1430: PLOT
1450:PLOT
1430:PLOT
1450: PLOT
1430:PLOT
14350:PLOT
1450: PLOT
1450: PLOT
1430:PLAT
1450:PLOT

1450:PLOT

34

215,179,10:MOVE 215, 192:PRINT o%;:
49,157,10:MOVER 6,0:PRINT o%; :MOVER
49,157,10:MOVE 93, 158: PRINT o%$;:
144,157,10:MOVE 134, 158:PRINT o$;:
169,157,10:MOVE 174, 158:PRINT o$;:
215,157,10:MOVE 215, 158: PRINT o$;:
49,122, 10:MOVER 6,0:PRINT o%; :MOVER
104,122, 10:MOVE 93, 122:PRINT o%;:
144,122,10:MOVE 134, 122:PRINT o$j:
169,122,10:MOVE 174, 122:PRINT o%;:
215,122,10:MOVE 215, 122:PRINT o%;:
49,87,10:MOVER 6,0:PRINT o%; :MOVER
104,87,10:MOVE 93,87:PRINT o%;:
144,89, 10:MOVE 134,89:PRINT o%;:
169,89, 10:MOVE 174,8%:PRINT o$;:
215,89,10:MOVE 215,87:PRINT o%;:
49,33, 10:MOVER 6,0:PRINT o%; :MOVER

104,33, 10: MOVE 93,53:PRINT o%;:

(221

{153

{631

LEB]

[F21

453

(DA]

(FD1

{321

[F61]

CFD3

f1C3

[ps1

LA71
LEF]

£4F3]

(B8]
[1E]

471

L[691

{351

[6B1]

[B71

[AS]

[371
[F93

SEABATTLE PROGRAM

1750 IF c$="e3"AND cd=0 THEN TAG:GOSUB 1450:PLOT 144,53,10:MVE 134,53:PRINT o$;:
MOVER —-31,-16:PRINT m$; : TAGOFF

1760 IF c$="e4"AND cd=0 THEN TAG:GOSUB 1450:PLOT 1&9,53,10:MIVE 174,53:PRINT o%; :
MOVER ~31,-16:PRINT m$; : TAGOFF

1770 IF c$="e5"AND cd=0 THEN TAG:GOSUB 1450:PLOT 215,53, 10:MWVE 215,53:PRINT o%;:
MOVER —35,-16:PRINT m$; : TAGOFF : RETURN

1780 IF c$="al"OR c$="a2"OR c$="a3"0R c$="a4"OR c$="a5"OR c$="b1"OR c$="b2"OR c$=
"HI'OR c$="b4"OR c$="bS"OR c$="c1"OR c$="c2"OR c$="c3"THEN ic=1:RETURN:ELSE

1790 IF c$="c4"0R c$="cS5"0R c$="d1"0OR c$="d2"OR c$="d3"OR c$="d4"OR c$="d5"OR c$=
"e1"OR c$="e2"OR c$="e3"0R c$="e4"OR c$="e5" THEN ic=1 :RETURN ELSE ic=0:GOSUB 1480:
RETURN ‘

1800 SOUND 1,0,150,15,1,,31:S0UND 4,0,40,15,0,0,2: RETURN

1810 DEFINT a-z:cd=1:MODE O:BORDER 0:GOSUB 720:CLS:GOSUB 790: WINDOWH2, 1,20,12,25:
PAPER#2, 14: CLSH#2: PEN#2, S: LOCATE#2, 4,5: PRINT#2, "X SEABATTLE *":PAPER O

1820 LOCATE#2,9,8:PRINT#2, "By" 1 LOCATE#2,3, 11:PRINTH2, "S.Messina @ 1987":TAG: GOSUB 80
0:G0SUB 1070:G0SUB 1000: RETURN

1830 SYMBOL 240,0,0,0,0,17,8,102,255:SYMBOL 241,1,0,0,4,77,159,252, 223: SYMBOL 242,64
,128,128, 128,129, 194, 236,255

1840 SYMBOL 243,0,0,0,0,4,8,48,120:SYMBOL 244,1,255,127,63,31,15,7,3:SYMBOL 245,223,
255,255,215, 255, 255, 255, 255

1850 SYMBOL 246,255,255,255, 255, 255, 255, 255, 255: SYMBOL 247,255, 255, 255, 253, 255, 255,
255,255: SYMBOL 248,239,254, 252, 220, 248, 240,224, 192

1860 SYMBOL 249,42,126,255, 126,58, 24, 16,0:SYMBOL 250,0,0,0,28,62,127, 127, 127: SYMBOL
251,127,127,127,62,28,0,0,0

1870 SYMBOL 252,0,40, 126,255,255, 127,62, 28: SYMBOL. 253,2,32, 141,30,63,31,78,5: SYMBOL
254,0,99,99,99,54,54,28,28

1880 SYMBOL 255,28,28,54,54,99,99,99,0

1890 s$=CHRS (24F) : t$=CHRS (23) +CHRS (1) : US=CHRS (23) +CHRS (O) 1 2$=CHRS$ (22) +CHRS (1) 1 x$=
CHRS$ (22) +CHRS (0) 1 g$=CHRS (138) +CHRS (138) : e$=CHRS (253) : p$=CHRS (231)

1900 h$=CHRS (240) +CHR$ (241) +CHRS (242) +CHRS$ (243) 1 1$=CHR$ (250) 1 i $=CHRS (251) : 0$=CHRS
(254) :m$=CHRS (255) : j$=CHRS (111)

1910 v$=CHRS (244) +CHRS (245) +CHRS (246) +CHRS (247) +CHRS (248)

1920 DATA 1,10, 160,33,21, 160,205,209, 188,201, 25, 160, 195,38, 160, 195, 199, 160, 195, 205,
160,0,0, 10, 140,83, 73,78, 203,83

1930 DATA &7,82,177,83,67,82,178,0,195, 163, 160,213,67,93, 124, 214,56,87, 125,214, 80,
111,48,10,124,37,230,7,32,4

1940 DATA 124,198,8,103,229,126,18,28,32,11,20, 122,230,7,32,5, 122,205,211, 160,87, 44,
32,11,36,124,230,7,32,5

1950 DATA 124,20S,211,160,103,16,224,225,209,213,229,75,229,6,7,93,84, 124,205,211,
160,103,126, 18, 16,245,225,44, 32, 11

1960 DATA 36,124,230,7,32,5,124,205,211, 160, 103, 13,32, 224,225,209, 21,32, 158, 124, 214,
56,103,67,54,0,44,32,11,36

1970 DATA 124,230,7,32,5, 124,205,211, 160,103, 16,238,201,221,110,0,221, 102, 6,45,37,
221,126,4,148,79,125, 198,2, 221

1980 DATA 1%0,2,87,205,26, 188, 124, 198,56, 103,175,129, 16,253,95, 24, 158, 24,98, 62, 192,
205,8, 188,201, 62,44,205,8, 188

1990 DATA 201,214,8,201,end

2000 READ a$:IF a$="end" THEN CALL 40940:RETURN:ELSE POKE add,VAL (a$):add=add+1:G0TO

35

M/C FLAGS TUTORIAL

— 1 the Flags
Conditional Jumps and |

Machine Code

It is very important in Machine Code. as it i1s in BASIC, to be able to make
decisions within a program. In BASIC, the main decision making command is IF...
THEN. . .FLSE (see this issue's Beginner's BASIC), & this is relatively simple to
use and is extremely versatile. In Machine Code, however, we do not have such a
universal and easy command available to us. Instead we have to use three things
in conjunction and they are conditional jumps, comparing and the FLAG REGISTER.
The first two are M/C instructions for use in programs whilst the third is the
actual means of making decisions, and this is the first thing that we will look
at.

THE FLAG REGISTER — Before looking at the Flag Register it will be necessary to
remind ourselves of one or two facts concerning registers in general. There are
several registers available for use in M/C (eg B.C,D.E.H.L) & these are general
purpose registers in which we can store. or load, information. These registers
can be used to hold any 8-bit number for any reason (but there are some conven-—
tions by which certain registers hold certain values) & they can be grouped to—
gether in register pairs (eg. BC.DE.HL). Each of these register pairs can hold
a 16-bit number & can be used in instructions as register pairs. An 8-bit numb—
er is a binary number which has 8 digits (for a full explanation see Issue One
— 'What is my Amstrad?’') & an example is the number 11010010 which can also be
represented by 210 (decimal) or even D2 (hexadecimal). The means of conversion
is unimportant but the thing to remember is that each Binary digIT can only be
either a 1 or a @ (ie. on or off). As well as these general registers there are
several specific ones which have a special use, one example is the accumulator
(A) register which is mainly used in arithmetic and which we have already met.
The Flag (F) register is another specific register and its use is to give inf-—
ormation about the result of the last executed instruction. Together the A and
F registers can also form a 'register pair' (AF) and are both 8-bit registers.
However., AF has no specific purpose and is not used to allow a 16-bit number to
be stored. Some instructions (eg. PUSH ard POP which we haven't discussed yet)
need to operate on a register pair and this is where AF is used. Normally, with
an ordinary register, it is the value as a whole that is used. However with the
Flag register, it is more important to know which bits are set (ie. equal to 1)
or reset (ie. equal to @). The reason for this is that each of the bits in the
Flag register tells us something about the result of the previous command to be
executed. In fact. two of the 8 bits in the Flag register are not used but the
others signify the following :—

36

M/C FLAGS TUTORIAL

Bit 7 6 5 4 3 2 1 0

Signifies S Z - H - PN N C
S = SIGN Flag P/V = PARITY/OVERFLOW Flag
Z = ZERO Flag N = ADD/SUBTRACT Flag
H = CARRY Flag

= HALF-CARRY Flag C
= uynused bits

|
!

The 'half-carry' and 'add/subtract' flags cannot be tested and so we'll ignore
them and 'parity/overflow' is also rather tricky and uncommon so we'll leave it
until a later issue. That leaves the 'sign', ‘zero' and 'carry' flags which are
all explained below :—

THE SIGN FLAG is set (made equal) to one if the result of the last instruction
was negative. If the result was not negative, this flag would be reset to zero.
Therefore after the following instructions, the Sign Flag would be set to 1 :—
LD A,201 ; A= 201
SUB 232 ;: A now equals —31 ard the SIGN FLAG is set to 1

THE ZERO FLAG is set to one if the result of the previous instruction was equal
to zero. Any other result would reset this flag to zero. After these two instr—
uctions, the zero flag would be set to 1 :—

1D A,-201 ; A = -201

ADD A, 201 ; A now equals © and the ZERO FLAG is set to 1

THE CARRY FLAG is set to one if a 'carry' occurs in addition or if a number is
‘borrowed’ in subtraction. Both of the sets of instructions below will cause the
carry flag ti be set to 1 :—
(1) LD A,60 ; A= 60
ADD A,230 ; A = 290, cannot be stored in a single register
; 80 A = 290-256=34 ard the CARRY FLAG is set

(ii) LD A,60 ; A = 60
SUB A, 230 ; A =-170, cannot be stored as an 8-bit number
; because of something known as 2's complement
; 80 A = ~170+256=86 and the CARRY FLAG is set

The reason for this can be seen if we print the sums in their binary form :—
(1) 0111100 60 (decimal)
+ 11100110 230 (decimal)

[

(11 00100010 34 (decimal)

Cannot be held in an 8-bit number so this sets
the CARRY Flag and is then discarded.

37

M/C FILAGS TUTORIAL

(ii) {11 20111100 = 60 (decimal)
- 11100110 = 230 (decimal)
01010110 = 86 (decimal)

Has to be borrowed from outside the 8~bit number and so it
sets the CARRY Flag and is then ignored.

CONDITIONAL JUMPS

These are Machine Code's equivalents to the BASIC IF...THEN...ELSE command but
are greatly limited. The main reason for this is that they can only test & act
on the flags (2 of which cannot be tested). However, these problems can be got
rourd by careful programming. We've already met the command JP (JumP) before &
this was an example of an unconditional jump. JumP also has a conditional form
which is used in much the same way. Following the acutal JP command there is a
letter (or couple of letters) which stands for the various flags there is also
a form which jumps when a flag is NOT set. The jumps that we will look at are:—

JP Z,zero = Jump if the ZERO flag is set (the result was zero)

JP NZ,notzero - jump if the ZERO flag is not set (the result was not 0)

JP M,minus — Jump if the SIGN flag is set (the result was negative)

JP P,pos — Jump if the SIGN flag is not set (the result was positive)

JP C,carry — Jump if the CARRY flag is set (the previous calculation
produced a 'carry' or a 'borrow')

JP NC.nocarry - jump if the CARRY flag is not set (the previous sum did

not produce a 'carry' or a 'borrow')

There are also two more conditional jumps (JP PO, label and JP PE,label) and

they refer to the P/V flag which we are not going to discuss in this issue. We
have briefly mentioned another jump command called JR (Jump Relative) which is
used only for small jumps. JR can only act on four conditions and they are :~

JR Z,zero — see above
JR NZ,notzero -~ see above
JR C,carry - see above
JR NC,nocarry -~ see above

For the sake of completeness it is worth mentioning conditional returns (RET)
and CALL commands which can both use all the conditions that JP can :~

RET Z CAllL Z,zero RET Nz CALL NZ.notzero
RET M CALL M,minus RET P CALL P,positive
RET C CALL C,carry RET NC RET NC.nocarry
RET PO CALL PO, label RET PE RET PE, label

38

M/C FLAGS TUTORIAL

COMPARE (CP)

There will be times when you want to make a decision without actually changing
any of the registers except the Flag. An example of this would be if you wanted
to see if A held a particular value ard if it did, the program should jump to a
certain address but otherwise the value in A should be printed. It's obvious in
this example, that there's no use in changing the value of A if you may need to
use it again later and this is where the compare (CP) instruction comes in use—
ful. CP actually subtracts the value following it from the accumulator and then
sets the flags according to the result, without storing the result anywhere or
altering the accumulator. To end this section on flags and conditions here is a
program which asks a question, gets the user's reply and then makes a decision
based on that input.

org &4000

1d a,2 ; A=2

call &bcle : set mode to mode 2

14 hl,text ; HL now holds the address at which the text is stored
call print ; call the printing routine

call &bb@6 : get the user to press a key and store its value in A
cp 121 ; compare the value in A with 121 = 'Y' (ie. set flags

; as 1f 121 had been subtracted from the value in A)

call z,clear
cp 89

call z.clear
ret

; and jump to .clear if the zero flag is set

; compare the value in A with 89 = 'v' (ie. set flags
; as 1f 89 had been subtracted from the value in A)

: and jump to .clear if the zero flag is set

; return to BASIC

.Clear
1d a,2 ; A=2
call &bcle ; set mode to mode 2
ret ; return from subroutine
.print
1d a. (hl) ; A holds the contents of the address point to by HL
cp @ : compare the value in A with @ (ie subtract @ from A)
ret z ; and return if the zero flag is set
call &bb5a ; print the character in A
inc hl ; HL = HL + 1
Jjp print ; jump to the label .print
.text

db "Do you want me to clear the screen (y/n)",0

Although this is a very simple and short example of how conditional jumps and
flags work, I hope that this has shown you that it is possible to make all the
decisions that you need to in M/C with a little effort and skill. In Issue Five
we'll look at some more conditional jumps of greater complexity and their uses.

39

Offffers

Please make all cheques payable
to Print-Out but any postal orders
should be made out to T J Defoe as
this saves the Post Office a great
deal of time and effort. Unless it
cannot be avoided, it is advisable
not to send cash through the post. m—

All orders should be sent to :— PRINT-OUT, Special Offers, 8 Maze Green Road,
Bishop's Stortford, Hertfordshire CM23 2PJ.

[ssue 5

If you wish to order a copy of Issue Five in advance, you may do so by sending
a cheque / postal order for £1.10 (or 70p + an A4 SAE with a 28p stamp) to the
usual address. We hope to have it published by about the 30th May & as soon as
it is printed it will be forwarded to you.

Program tapes and discs

We now supply both program tapes and discs for ALL issues and the prices given
below also include a booklet to explain how the programs work plus postage and
packing. Tapes and discs are available for Issues One, Two, Three and Four.
The cost for a program tape is as follows :—
a) A blank tape (at least 15 minutes) and 50p (p+p)
or Db) £1.00 (which alsc includes the price of a tape)
The cost for a program disc is :—
a) A blank formatted disc and 50p (p+p)
or b) £3.00 (which also includes the cost of a MAXELL/AMSOFT disc) *

* When ordering using this particular method, please allow about 14 days for
delivery as we must rely on outside suppliers for the discs.

Back issues

We still have some copies of Issues One, Two and Three available and the price
is £1.10 which includes postage and packing. Alternatively, you can order both
a back issue and its corresponding tape or disc by sending :—
a) £1.75 - includes the tape, the required issue and postage and packing
b) £3.75 ~ includes the disc (genuine MAXELI/AMSCFT disc) & the required
issue and postage and packing.

40

	Page 01
	Page 02
	Page 03
	Page 04
	Page 05
	Page 06
	Page 07
	Page 08
	Page 09
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40

