
AT90S ASSEMBLER,
LINKER, AND LIBRARIAN

Programming
Guide

§ 0 Preface 18/9/96, 5:07 pm1

ii

AA90–1

COPYRIGHT NOTICE

© Copyright 1995–1996 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written
consent of IAR Systems. The software described in this document is
furnished under a license and may only be used or copied in accordance
with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice
and does not represent a commitment on any part of IAR Systems.
While the information contained herein is assumed to be accurate, IAR
Systems assumes no responsibility for any errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the
authors of this document be liable for special, direct, indirect, or
consequential damage, losses, costs, charges, claims, demands, claim for
lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

C-SPY is a trademark of IAR Systems. Windows and MS-DOS are
trademarks of Microsoft Corp.

All other product names are trademarks or registered trademarks of
their respective owners.

Second edition: September 1996
Part no: AA90–1

This documentation was produced by Human-Computer Interface.

§ 0 Preface 18/9/96, 5:07 pm2

iii

AA90–1

WELCOME Welcome to the AT90S Assembler, Linker, and Librarian Programming
Guide.

This guide provides reference information about the IAR Systems
Assembler, XLINK Linker, and XLIB Librarian for the AT90S family of
microprocessors, and applies to both the Embedded Workbench and
command line versions of these tools.

Before reading this guide we recommend you refer to the QuickStart
Card, or the chapter Installation and documentation route map, for
information about installing the IAR Systems tools and an overview of
the documentation.

If you are using the Embedded Workbench refer to the AT90S Windows
Workbench Interface Guide for information about running the IAR
Systems tools from the Workbench interface, a simple tutorial, and
complete reference information about the Workbench commands and
dialog boxes, and the Workbench editor.

If you are using the command line version refer to the AT90S Command
Line Interface Guide for general information about running the IAR
Systems tools from the command line, and a simple tutorial to illustrate
how to use them.

For information about programming with the AT90S C Compiler refer
to the AT90S C Compiler Programming Guide.

If your product includes the optional AT90S C-SPY debugger refer to
the AT90S C-SPY User Guide for information about debugging with
C-SPY.

ABOUT THIS GUIDE This guide consists of the following parts and chapters:

Installation and documentation route map explains how to install and
run the IAR Systems tools, and gives an overview of the documentation
supplied with them.

AT90S Assembler
The Introduction provides a brief overview of the AT90S Assembler.

The Tutorial explains how to use the most important features of the
assembler to develop simple AT90S machine-code programs. It also
describes a typical development cycle using XLINK and XLIB.

PREFACE

§ 0 Preface 18/9/96, 5:07 pm3

iv

AA90–1

PREFACE

Assembler options summary explains how to set the AT90S Assembler
options, and gives an alphabetical summary of the options.

Assembler options reference then gives reference information about each
option.

Assembler file formats describes the source format for the AT90S
Assembler, and the format of assembler listings.

Assembler operator summary gives a summary of the assembler
operators, arranged in order of precedence.

Assembler operator reference then gives a complete alphabetical list of the
AT90S Assembler operators, with a full description of each one.

Assembler directives summary gives an alphabetical summary of the
AT90S Assembler directives.

Assembler directives reference gives complete reference information about
the AT90S Assembler directives, classified into groups according to
their function.

Assembler instructions lists the AT90S instruction mnemonics, with
details of the addressing modes that can be used with each one.

XLINK Linker
XLINK Linker introduces the XLINK Linker, and describes the XLINK
listing format.

XLINK options summary explains how to set the XLINK options, and
gives an alphabetical summary of the options.

XLINK options reference then gives detailed information about each
option.

XLINK output formats summarizes the output formats available from
XLINK.

XLIB Librarian
XLIB Librarian introduces the XLIB Librarian, which is designed to
allow you to create and maintain relocatable libraries of routines.

XLIB command summary gives a summary of the XLIB commands.

XLIB command reference then gives complete reference information
about each XLIB command.

§ 0 Preface 18/9/96, 5:07 pm4

v

AA90–1

PREFACE

Diagnostics
Assembler diagnostics provides a list of error messages specific to the
AT90S Assembler.

XLINK diagnostics and XLIB diagnostics describe the error and warning
messages produced by XLINK and XLIB, together with explanations
and suggested courses of action in each case.

ASSUMPTIONS

This guide assumes that you already have a working knowledge of the
following:

◆ The AT90S processor.

◆ The AT90S Assembler language.

◆ Windows or MS-DOS, depending on your host system.

Note that the illustrations in this guide show the Workbench running
with Windows 95, and their appearance will be slightly different if you
are using a different platform.

CONVENTIONS

This guide uses the following typographical conventions:

Style Used for

computer Text that you type in, or that appears on the screen.

parameter A label representing the actual value you should type as
part of a command.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog
boxes that appear on the screen.

reference A cross-reference to another part of this guide, or to
another guide.

Identifies instructions specific to the versions of the
IAR Systems tools for the Workbench interface.

Identifies instructions specific to the command line
versions of IAR Systems tools.

§ 0 Preface 18/9/96, 5:07 pm5

vi

AA90–1

PREFACE

§ 0 Preface 18/9/96, 5:07 pm6

vii

AA90–1

CONTENTS

INSTALLATION AND DOCUMENTATION ROUTE MAP 1
Command line versions 1
Windows Workbench versions 2
UNIX versions 3
Documentation route map 4

INTRODUCTION . 5
Assembler 5
XLINK Linker 6
XLIB Librarian 7

TUTORIAL . 9
Getting started 9
Creating a program 12
Using macros 20
Using modules 25

ASSEMBLER OPTIONS SUMMARY 31
Setting assembler options 32
Options summary 33

ASSEMBLER OPTIONS REFERENCE 35
Code generation 35
#define 39
List 40
#undef 44
Include 45
Target 46
Command line 48

ASSEMBLER FILE FORMATS . 51
Source format
Expressions and operators 51
Register symbols 56
Listing format 57
Output formats 59

§ 0 Preface 18/9/96, 5:07 pm7

viii

AA90–1

CONTENTS

ASSEMBLER OPERATOR SUMMARY 61

ASSEMBLER OPERATOR REFERENCE 65

ASSEMBLER DIRECTIVES SUMMARY 79
Directives summary 79

ASSEMBLER DIRECTIVES REFERENCE 85
Syntax conventions 86
Module control directives 88
Symbol control directives 90
Segment control directives 91
Value assignment directives 96
Conditional assembly

directives 101
Macro processing directives 103
Listing control directives 110
C-style preprocessor directives 115
Data definition or allocation

directives 119
Assembler control directives 120

ASSEMBLER INSTRUCTIONS . 125
CPU instruction mnemonics 125

XLINK LINKER . 129
Introduction 129
Input files and modules 131
Listing format 134

XLINK OPTIONS SUMMARY . 139
Setting XLINK options 139
Summary of options 140

XLINK OPTIONS REFERENCE . 143
Output 143
#define 145
Error 146
List 148
Include 150
Input 151

§ 0 Preface 18/9/96, 5:07 pm8

ix

AA90–1

Command line 153
Segment control 156

XLINK OUTPUT FORMATS . 163

XLIB LIBRARIAN . 167
Introduction 167

XLIB COMMAND SUMMARY . 169

XLIB COMMAND REFERENCE . 171

ASSEMBLER DIAGNOSTICS . 189
Introduction 189
Error messages 191
Warning messages 199

XLINK DIAGNOSTICS . 203
Introduction 203
Error messages 204
Warning messages 213

XLIB DIAGNOSTICS . 217
XLIB messages 217

INDEX . 221

CONTENTS

§ 0 Preface 18/9/96, 5:07 pm9

x

AA90–1

CONTENTS

§ 0 Preface 18/9/96, 5:07 pm10

1

AA90–1

INSTALLATION AND
DOCUMENTATION ROUTE
MAP
This chapter explains how to install and run the command line and
Windows Workbench versions of the IAR products, and gives an
overview of the user guides supplied with them.

Please note that some products only exist in a command line version,
and that the information may differ slightly depending on the product
or platform you are using.

This section describes how to install and run the command line
versions of the IAR Systems tools.

WHAT YOU NEED

◆ DOS 4.x or later. This product is also compatible with a DOS
window running under Windows 95, Windows NT 3.51 or later, or
Windows 3.1x.

◆ At least 10 Mbytes of free disk space.

◆ A minimum of 4 Mbytes of RAM available for the IAR applications.

INSTALLATION

1 Insert the first installation disk.

2 At the MS-DOS prompt type:

a:\install R

3 Follow the instructions on the screen.

When the installation is complete:

4 Make the following changes to your autoexec.bat file:

Add the paths to the IAR Systems executable and user interface
files to the PATH variable; for example:

PATH=c:\dos;c:\utils;c:\iar\exe;c:\iar\ui;

COMMAND LINE
VERSIONS

§ 1 Routemap 18/9/96, 5:08 pm1

INSTALLATION AND DOCUMENTATION ROUTE MAP

2

AA90–1

Define environment variables C_INCLUDE and XLINK_DFLTDIR
specifying the paths to the inc and lib directories; for example:

set C_INCLUDE=c:\iar\inc\
set XLINK_DFLTDIR=c:\iar\lib\

5 Reboot your computer for the changes to take effect.

6 Read the Read-Me file, named product.doc, for any information
not included in the guides.

RUNNING THE TOOLS

Type the appropriate command at the MS-DOS prompt.

For more information refer to the chapter Getting started in the
Command Line Interface Guide.

This section explains how to install and run the Embedded Workbench.

WHAT YOU NEED

◆ Windows 95, Windows NT 3.51 or later, or Windows 3.1x.

◆ Up to 15 Mbytes of free disk space for the Embedded Workbench.

◆ A minimum of 4 Mbytes of RAM for the IAR applications.

If you are using C-SPY you should install the Workbench before C-SPY.

INSTALLING FROM WINDOWS 95 OR NT 4.0

1 Insert the first installation disk.

2 Click the Start button in the taskbar, then click Settings and
Control Panel.

3 Double-click the Add/Remove Programs icon in the Control
Panel folder.

4 Click Install, then follow the instructions on the screen.

RUNNING FROM WINDOWS 95 OR NT 4.0

1 Click the Start button in the taskbar, then click Programs and
IAR Embedded Workbench.

2 Click IAR Embedded Workbench.

WINDOWS
WORKBENCH VERSIONS

§ 1 Routemap 18/9/96, 5:08 pm2

INSTALLATION AND DOCUMENTATION ROUTE MAP

3

AA90–1

INSTALLING FROM WINDOWS 3.1x OR NT 3.51

1 Insert the first installation disk.

2 Double-click the File Manager icon in the Main program group.

3 Click the a disk icon in the File Manager toolbar.

4 Double-click the setup.exe icon, then follow the instructions on the
screen.

RUNNING FROM WINDOWS 3.1X OR NT 3.51

1 Go to the Program Manager and double-click the IAR Embedded
Workbench icon.

RUNNING C-SPY

Either:

1 Start C-SPY in the same way as you start the Embedded Workbench
(see above).

Or:

1 Choose Debugger from the Embedded Workbench Project menu.

UNIX VERSIONS This section describes how to install and run the UNIX versions of the
IAR Systems tools.

WHAT YOU NEED

◆ HP9000/700 workstation with HP-UX 9.x (minimum), or a
Sun 4/SPARC workstation with SunOS 4.x (minimum) or
Solaris 2.x (minimum).

INSTALLATION

Follow the instructions provided with the media.

RUNNING THE TOOLS

Type the appropriate command at the UNIX prompt. For more
information refer to the chapter Getting started in the Command Line
Interface Guide.

§ 1 Routemap 18/9/96, 5:08 pm3

INSTALLATION AND DOCUMENTATION ROUTE MAP

4

AA90–1

Do not delete this story... there are
two index entries here...
route map
documentation route map

COMMAND LINE
VERSION

WINDOWS WORKBENCH
VERSION

QuickStart Card
To install the tools and run the

Embedded Workbench. QS

C Compiler Programming Guide
To learn about writing programs with
the IAR Systems C Compiler, and for
reference information about the
compiler options and C language.

Assembler, Linker, and
Librarian Programming Guide
To learn about using the IAR
Systems assembler, linker, and
librarian, and for reference
information about these tools.

C-SPY User Guide, Windows
Workbench Version

To learn about debugging
with C-SPY for Windows,

and for C-SPY reference.

C-SPY User Guide,
Command Line Version
To learn about debugging
with the command line
version of C-SPY, and for
C-SPY reference.

Windows Workbench
Interface Guide

To get started with using
the Embedded Workbench,

and for Embedded
Workbench reference.

Command Line Interface
Guide and Utilities Guide
To get started with using the
command line, and for
information about the environ-
ment variables and utilities.

QuickStart Card
To install the tools and run the DOS
or UNIX versions.

DOCUMENTATION
ROUTE MAP

§ 1 Routemap 18/9/96, 5:08 pm4

5

AA90–1

INTRODUCTION
The IAR Systems AT90S Assembler, and its associated tools the XLINK
Linker and XLIB Librarian, are available in two versions: a command
line version, and a Windows version integrated with the IAR Systems
Embedded Workbench development environment.

This guide describes both versions of these tools, and provides
information about running them from the Workbench or from the
command line, as appropriate.

ASSEMBLER The IAR Systems AT90S Assembler is a powerful relocating macro
assembler with a versatile set of directives.

The assembler incorporates a high degree of compatibility with the
microprocessor manufacturer’s own assemblers, to ensure that software
originally developed using them can be transferred to the IAR Systems
Assembler with little or no modification.

It provides the following features:

GENERAL

◆ One pass assembly, for faster execution.

◆ Integration with the XLINK Linker and XLIB Librarian.

◆ Integration with other IAR Systems software.

◆ Self-explanatory error messages.

ASSEMBLER FEATURES

◆ Support for AT90S-family microprocessors.

◆ Up to 256 relocatable segments per module.

◆ 32-bit arithmetic and IEEE floating-point constants.

◆ 255 significant characters in symbols.

◆ Powerful recursive macro facilities.

◆ Number of symbols and program size limited only by available
memory.

§ 2 Introduction 18/9/96, 5:08 pm5

INTRODUCTION

6

AA90–1

◆ Support for complex expressions with external references.

◆ Forward references allowed to any depth.

◆ Support for C language pre-processor directives and sfr keyword.

◆ Macros in Intel/Motorola style.

XLINK LINKER The IAR Systems XLINK Linker converts one or more relocatable
object files produced by the IAR Systems Assembler or C Compiler to
machine code for a specified target processor. It supports a wide range
of industry-standard loader formats, in addition to the IAR Systems
debug format used by the C-SPY high level debugger.

XLINK supports user libraries, and will load only those modules that
are actually needed by the program you are linking.

The final output produced by XLINK is an absolute, target-executable
object file that can be programmed into an EPROM, down loaded to a
hardware emulator, or run directly on the host using the IAR Systems
C-SPY debugger.

XLINK offers the following important features:

FEATURES OF XLINK

◆ Unlimited number of input files.

◆ Searches user-defined library files and loads only those modules
needed by the application.

◆ Symbols may be up to 255 characters long with all characters being
significant. Both upper and lower case may be used.

◆ Global symbols can be defined at link time.

◆ Flexible segment commands allow full control of the locations of
relocatable code and data in memory.

◆ Support for over 30 emulator formats.

§ 2 Introduction 18/9/96, 5:08 pm6

INTRODUCTION

7

AA90–1

XLIB LIBRARIAN The IAR Systems XLIB Librarian enables you to manipulate the
relocatable object files produced by the IAR Systems Assembler and
C Compiler.

XLIB provides the following features:

FEATURES OF XLIB

◆ Support for modular programming.

◆ Modules can be listed, added, inserted, replaced, deleted, or
renamed.

◆ Segments can be listed and renamed.

◆ Symbols can be listed and renamed.

◆ Modules can be changed between program and library type.

◆ Interactive or batch mode operation.

◆ A full set of library listing operations.

§ 2 Introduction 18/9/96, 5:08 pm7

INTRODUCTION

8

AA90–1§ 2 Introduction 18/9/96, 5:08 pm8

9

AA90–1

TUTORIAL
This tutorial illustrates how you might use the AT90S Assembler to
develop a series of simple machine-code programs for the AT90S
processor, and illustrates some of the assembler’s most important features.

Before reading this chapter you should:

◆ Have installed the assembler software; see the QuickStart Card or
the chapter Installation and documentation route map.

◆ Be familiar with the architecture and instruction set of the AT90S
processor. For more information see the chapter Assembler
instructions, and the manufacturer’s data book.

It is also recommended that you complete the introductory tutorial in
the AT90S Windows Workbench Interface Guide or AT90S Command Line
Interface Guide, as appropriate, to familiarize yourself with the interface
you are using.

RUNNING THE EXAMPLE PROGRAMS

This tutorial shows how to run the example programs using the
optional C-SPY simulator.

Alternatively, you can run the examples by linking them without
debugging information to give a file aout.a90, which can be
downloaded to an emulator with debugging facilities. Use the XLINK -F
option to specify a format other than the default, Intel extended.

GETTING STARTED The first step in developing an application using the assembler is to
create a new project for the application files.

CREATING A NEW PROJECT

Creating a new project using the Embedded Workbench
First, run the Embedded Workbench, and create a project for the
tutorial as follows.

§ 3 Atmel Tutorial 18/9/96, 5:08 pm9

TUTORIAL

10

AA90–1

Choose New from the File menu to display the following dialog box:

Select Project and choose OK to display the New Project dialog box.

Enter Tutorials in the Project Filename box, and set the Target
CPU Family to A90:

Then choose OK to create the new project.

The Project window will be displayed. If necessary, select Release from
the Targets drop-down list box to display the Release target:

Next, create a group to contain the tutorial source files as follows.

§ 3 Atmel Tutorial 18/9/96, 5:09 pm10

TUTORIAL

11

AA90–1

Choose New Group… from the Project menu and enter the name
Common Sources. By default both targets are selected, so the group will
be added to both targets:

Choose OK to create the group. It will be displayed in the Project window.

Now set up the target options to suit the processor and memory model we
have chosen.

Select the Release folder icon in the Project window, choose Options…
from the Project menu, select General in the Category list, and click
the Target tab to display the target options page.

Set the Processor Configuration to Max 64 Kbyte data, 8 Kbyte
code and select the Small memory model.

Then choose OK to save the target options.

§ 3 Atmel Tutorial 18/9/96, 5:09 pm11

TUTORIAL

12

AA90–1

Creating a new project using the command line
It is a good idea to keep all the files for a particular project in one
directory, separate from other projects and the system files.

The tutorial files are installed in the aa90 directory. Select this directory
by entering the command:

cd c:\iar\aa90 R

During this tutorial, you will work in this directory, so that the files you
create will reside here.

CREATING A PROGRAM The first tutorial illustrates how you write a basic assembler program,
and how you then assemble, link, and run it.

WRITING A PROGRAM

The first example program is a simple count loop which counts up the
registers R16 and R17 in binary-coded decimal:

NAME first
ORG 0
RJMP main

ORG 1Ch
main CLR R17

CLR R16
loop INC R17

CPI R17,10
BRNE loop
CLR R17
INC R16
CPI R16,10
BRNE loop

done_it JMP done_it

END

The ORG directive assembles the program starting at address 0, the
AT90S reset address, so the program is executed upon reset.

Writing the program using the Embedded Workbench
Run the Embedded Workbench, and choose New from the File menu to
display the New dialog box.

§ 3 Atmel Tutorial 18/9/96, 5:09 pm12

TUTORIAL

13

AA90–1

Select Source/Text and choose OK to open a new text document.

Enter the program given above and save it in a file first.s90. The files
associated with the AT90S Assembler have extensions .s90, .a90,
.d90, and .r90 to identify them.

Alternatively, a copy of the program is provided in the assembler files
directory.

Writing the program using the command line
Enter the program using any standard text editor, such as the MS-DOS
edit editor, and save it in a file called first.s90. The files associated
with the AT90S Assembler have extensions .s90, .a90, .d90, and .r90
to identify them. Alternatively, a copy is provided in the assembler files
directory.

You now have a source file which is ready to assemble.

ASSEMBLING THE PROGRAM

Assembling the program using the Embedded Workbench
To assemble the program first add it to the Tutorials project as follows.

Choose Files… from the Project menu to display the Project Files
dialog box. Locate the file first.s90 in the file selection list in the
upper half of the dialog box, and choose Add to add it to the Common
Sources group:

§ 3 Atmel Tutorial 18/9/96, 5:09 pm13

TUTORIAL

14

AA90–1

Then click Done to close the Project Files dialog box.

Click the symbol to display the file in the Project window tree
display:

Then set up the assembler options for the project as follows.

Select the Release folder in the Project window. Then choose
Options… from the Project menu and select AA90 in the Category
list to display the assembler options pages:

§ 3 Atmel Tutorial 18/9/96, 5:09 pm14

TUTORIAL

15

AA90–1

Click List, to display the page of list options, and select List file to
produce an assembler list file. This will enable you to examine the code
generated by the assembler:

Choose OK to close the Options dialog box.

To assemble the file select it in the Project window and choose Compile
from the Project menu. The progress will be displayed in the Messages
window:

The listing is created in a file first.lst in the folder specified in the
General options page; by default this is Release\list. Open this file by
choosing Open… from the File menu, and choosing first.lst from the
appropriate folder.

§ 3 Atmel Tutorial 18/9/96, 5:10 pm15

TUTORIAL

16

AA90–1

Assembling the file using the command line
To assemble the file, type the following command at the prompt:

aa90 first -r -L R

This will send a listing to the file first.lst.

 Viewing the listing
If you look at the listing file you will see that it contains the following
(the header will be slightly different if you are using the command line):

##

#

IAR Systems A90 Assembler Vx.xx

#

Target option = Relative jumps reach entire addr space

Source file = first.s90

List file = first.lst

Object file = first.r90

Command line = first -r -L

#

(c) Copyright IAR Systems 1996

##

 1 00000000 NAME first

 2 00000000 ORG 0

 3 00000000 0DC0 RJMP main

 4 00000002

 5 0000001C ORG 1Ch

 6 0000001C 1127 main CLR R17

 7 0000001E 0027 CLR R16

 8 00000020 1395 loop INC R17

 9 00000022 1A30 CPI R17,10

 10 00000024 E9F7 BRNE loop

 11 00000026 1127 CLR R17

 12 00000028 0395 INC R16

 13 0000002A 0A30 CPI R16,10

 14 0000002C C9F7 BRNE loop

 15 0000002E 0C941700 done_it JMP done_it

 16 00000032

 17 00000032 END

§ 3 Atmel Tutorial 18/9/96, 5:10 pm16

TUTORIAL

17

AA90–1

##############################

CRC:7920

Errors: 0

Warnings: 0

Bytes: 24

##############################

This shows the machine-code instructions generated by each of the
source code statements.

Note that the CRC number depends on the date of assembly, and may
vary.

The format of the listing is as follows:

Source line
number

Address
field

Data
field

Source line

6 0000001C 1127 main CLR R17
7 0000001E 0027 CLR R16
8 00000020 1395 loop INC R17
9 00000022 1A30 CPI R17,10

Assuming that the source assembled successfully, a further file,
first.r90, will also be created, containing the linkable object code.

If you made any errors when entering the program, these will be
displayed on the screen during the assembly. If this happens, return to
the editor, check carefully through the source code to locate and correct
all the mistakes, resave the source file using the same name, and try
assembling it again.

LINKING THE PROGRAM

Linking the program using the Embedded Workbench
Before linking the program you need to set up the linker options for the
project.

Select the Release folder in the Project window. Then choose
Options… from the Project menu, and select XLINK in the Category
list to display the linker option pages.

§ 3 Atmel Tutorial 18/9/96, 5:10 pm17

TUTORIAL

18

AA90–1

Then click Output to display the output options.

Check that the Format option is set to Debug info with terminal I/O,
to generate a file for debugging with C-SPY.

Then choose OK to close the Options dialog box.

To link the file choose Link from the Project menu. As before, the
progress during linking is shown in the Messages window.

Linking the program using the command line
To link the object file to produce code that can be executed, enter the
command:

xlink first -ca90 -r R

§ 3 Atmel Tutorial 18/9/96, 5:10 pm18

TUTORIAL

19

AA90–1

The -c option specifies the target processor, and the -r option includes
debugging information.

By default, the output code will be placed in a file aout.d90.

RUNNING THE PROGRAM

Running the program using the Embedded Workbench
To run the example program using the C-SPY debugger choose
Debugger from the Project menu.

The following three warning messages will be displayed:

Only assembler level debugging available.
Exit label missing.
No break on program exit.

You can ignore these warnings, so click OK to proceed.

The C-SPY window will then be displayed.

In C-SPY open the Register window, by choosing Register from the
Window menu.

Then choose Step from the Execute menu, or press 2, to step through
the program and watch the R17 and R16 registers count in binary-
coded decimal.

§ 3 Atmel Tutorial 18/9/96, 5:10 pm19

TUTORIAL

20

AA90–1

Running the program using the command line
To run the example program using the C-SPY debugger type the
following command:

csa90 aout R

After the program has loaded enter the command WINDOW REG ON to
display the value of the registers.

Then type STEP, or press 2, to step through the program and watch the
registers R16 and R17 count in binary coded decimal.

USING MACROS The second example will demonstrate the use of simple macros. It
defines outdat which outputs an 8-bit value to port B, and strobe
which strobes bit 7 of port A. The code to do this is quite short and may
need to be executed fast, making a macro an ideal solution.

For a complete explanation of the assembler’s macro features see Macro
processing directives, page 103.

strobe MACRO
IN R25,portA
SBR R25,128
OUT portA,R25
CBR R25,128
OUT portA,R25
ENDM

outdat MACRO val
LDI R25,val
OUT portB,R25
ENDM

The strobe macro reads port A, sets bit 7 and outputs the result. It
then clears bit 7 and outputs the result again.

The outdat macro loads the supplied constant into R25, which is then
written to port B.

§ 3 Atmel Tutorial 18/9/96, 5:10 pm20

TUTORIAL

21

AA90–1

The full listing of the dio assembler program is as follows:

NAME dio

; define the ports
ASEG DATA

portA VAR 0x1B
portB VAR 0x18

;define the macros
strobe MACRO

IN R25,portA
SBR R25,128
OUT portA,R25
CBR R25,128
OUT portA,R25
ENDM

outdat MACRO val
LDI R25,val
OUT portB,R25
ENDM

;Vector table
ASEG CODE
ORG 0x00
RJMP main ; Reset vector

;main code
ORG 0x1C ; Start of main code

main outdat 23
strobe
outdat 40
strobe

done JMP done
END

Type in this listing and save it in a file dio.s90. Alternatively, a copy of
the source is provided on the installation disk.

§ 3 Atmel Tutorial 18/9/96, 5:10 pm21

TUTORIAL

22

AA90–1

ASSEMBLING THE PROGRAM

Assembling the program using the Embedded Workbench
Close the Tutorial project, and create a new project, Tutor2, by
choosing New from the File menu, and add the file dio.s90 to it.

Then assemble the file as before, by selecting it in the Project window
and choosing Compile from the Project menu.

Assembling the program using the command line
To assemble the source program enter the command:

aa90 dio -r -L -v1 R

 Viewing the listing
The following output will be produced in the file dio.lst. In this and
subsequent listings the header information is omitted for clarity:

 1 00000000 NAME dio

 2 00000000

 3 00000000 ; define the ports

 4 00000000 ASEG DATA

 5 0000001B portA VAR 0x1B

 6 00000018 portB VAR 0x18

 7 00000000

 8 00000000 ;define the macros

 16 00000000

 21 00000000

 22 00000000 ;Vector table

 23 00000000 ASEG CODE

 24 00000000 ORG 0x00

 25 00000000 0DC0 RJMP main ; Reset vector

 26 00000002

 27 00000002 ;main code

 28 0000001C ORG 0x1C ; Start of main

code

 29 0000001C main outdat 23

 29 0000001C main outdat 23

 29.1 0000001C 97E1 LDI R25,23

 29.2 0000001E 98BB OUT portB,R25

 29.3 00000020 ENDM

 30 00000020 strobe

 30.1 00000020 9BB3 IN R25,portA

 30.2 00000022 9068 SBR R25,128

§ 3 Atmel Tutorial 18/9/96, 5:10 pm22

TUTORIAL

23

AA90–1

 30.3 00000024 9BBB OUT portA,R25

 30.4 00000026 9F77 CBR R25,128

 30.5 00000028 9BBB OUT portA,R25

 30.6 0000002A ENDM

 31 0000002A outdat 40

 31.1 0000002A 98E2 LDI R25,40

 31.2 0000002C 98BB OUT portB,R25

 31.3 0000002E ENDM

 32 0000002E strobe

 32.1 0000002E 9BB3 IN R25,portA

 32.2 00000030 9068 SBR R25,128

 32.3 00000032 9BBB OUT portA,R25

 32.4 00000034 9F77 CBR R25,128

 32.5 00000036 9BBB OUT portA,R25

 32.6 00000038 ENDM

 33 00000038 0C941C00 done JMP done

 34 0000003C END

The macro-generated lines are numbered with a decimal suffix: eg 30.1,
30.2, etc.

LINKING THE PROGRAM

In order to be able to execute the program, the relocatable file produced
by the assembler needs to be converted to an object code program with
all the addresses resolved.

Linking the program using the Embedded Workbench
Link the file by choosing Link from the Project menu.

Linking the program using the command line
Run XLINK to produce code for debugging with the command:

xlink dio -ca90 -r -l dio.map R

This generates a file aout.d90.

RUNNING THE PROGRAM

Running the program using the Embedded Workbench
To run the program using the C-SPY debugger choose Debugger from
the Project menu and, as before, ignore the warning messages.

The C-SPY window will be displayed.

§ 3 Atmel Tutorial 18/9/96, 5:10 pm23

TUTORIAL

24

AA90–1

Choose Step from the Execute menu to display the source program in
the Source window.

Then set a breakpoint at the instruction JMP done at the end of the
main program in the Source window by selecting it and choosing
Toggle Breakpoint from the Control menu.

The JMP done instruction will be highlighted to show that there is a
breakpoint set there:

Open the Memory window, by choosing Memory from the Window
menu, and display the contents of the locations portA and portB at
0x1B and 0x18 respectively.

Then execute from main up to the breakpoint by choosing Go from the
Execute menu.

You will see the effect of the program in the Memory window.

Running the program using the command line
If you have the C-SPY simulator you can run the program with the
command:

csa90 aout -v1 R

§ 3 Atmel Tutorial 18/9/96, 5:11 pm24

TUTORIAL

25

AA90–1

Set C-SPY up with the following commands:

MEMORY SFR 0 R
WINDOW REG ON R
REG PC=0 R

These commands open Memory and Register windows, and then set the
PC to address 0 which is the reset vector.

Now single step though the code using the 2 key, and notice how
locations 0x1B and 0x18 corresponding to portA and portB change.

GENERATING A FILE FOR A PROM PROGRAMMER

To generate code which can be read by a PROM programmer, link
without the -r option to get a file aout.a90.

USING MODULES The final example demonstrates how to create library modules and use
the XLIB Librarian to maintain files of modules.

USING LIBRARIES

If you are working on a large project you will soon accumulate a
collection of useful routines that are used by several of your programs.

To avoid the need to assemble a routine each time you need it you can
store such routines as object files; ie assembled but not linked.

A collection of routines in a single object file is referred to as a library. It
is recommended that you use library files to create collections of related
routines, such as graphical or math libraries.

You can use the XLIB Librarian to manipulate libraries; it allows you to:

◆ Change modules from PROGRAM to LIBRARY type, and vice versa.

◆ Add or remove modules from a library file.

◆ Change the names of entries.

◆ List module names, entry names, etc.

§ 3 Atmel Tutorial 18/9/96, 5:11 pm25

TUTORIAL

26

AA90–1

CREATING THE MAIN PROGRAM

The main program is as follows:

NAME main

PUBLIC main
EXTERN r_shift

RSEG MY_CODE
main LDI R25,H'A

MOV R4,R25
LDI R25,5
MOV R5,R25
CALL r_shift

done_it RJMP done_it

END main

This simply uses a routine called r_shift to shift the contents of
register R4 to the right. The data in register R4 is set to $A and the
r_shift routine is called to shift it to the right by four places as
specified by the contents of register R5.

The EXTERN directive declares r_shift as an external symbol, to be
resolved at link time.

Enter this program and save it as the file main.s90 or, alternatively,
copy the file provided in the assembler files directory (by default
c:\iar\aa90).

CREATING THE LIBRARY ROUTINES

The second program is used to form a separately assembled library. This
contains two library routines: the r_shift routine called by main, and
the corresponding l_shift routine. These both operate on the contents
of register R4 by repeatedly shifting it to the right or left. The number
of shifts performed is controlled by decrementing register R5 to zero.

§ 3 Atmel Tutorial 18/9/96, 5:11 pm26

TUTORIAL

27

AA90–1

MODULE r_shift
public r_shift
RSEG MY_CODE

r_shift TST R5
BREQ r_shift2
LSR R4
DEC R5
BRNE r_shift

r_shift2 RET
ENDMOD

MODULE l_shift
PUBLIC l_shift

RSEG MY_CODE
l_shift TST R5

BREQ l_shift2
LSL R4
DEC R5
BRNE l_shift

l_shift2 RET

END

The routines are defined as library modules by the MODULE directives;
these instruct the XLINK Linker to include them only if they are called
by another module.

The r_shift and l_shift entry addresses are made public to other
modules with a PUBLIC directive.

Save these modules in a source file called shifts.s90 or, alternatively,
copy the file provided in the assembler files directory (by default
c:\iar\aa90).

ASSEMBLING AND LINKING THE SOURCE FILES

Next you need to assemble both of the above source files.

Although it is possible to assemble both source files together, in a large
project this would soon become very time-consuming. By assembling
the library routines separately, changes to the main program only
require reassembly of the main source file.

§ 3 Atmel Tutorial 18/9/96, 5:11 pm27

TUTORIAL

28

AA90–1

Assembling and linking using the Embedded Workbench
Create a project containing main.s90 and shifts.s90, as described for
the previous tutorials:

To assemble and link both files choose Make from the Project menu.

Assembling and linking using the command line
To assemble the main program type:

aa90 main -r -L R

Similarly, to assemble the library routines type:

aa90 shifts -r -L R

Assembling the files creates two relocatable files. You need to link these
together to produce a single executable object file containing the main
program and the library routine it references, with all of the cross
references resolved. In this case the only reference from one section to
the other is the call of the l_shift subroutine. The r_shift routine is
not used at all.

To link the files in a single step enter the following at the command line
(on one line):

xlink -ca90 main shifts -ZMY_CODE=0E -xsm -l main.map R

The following table explains the options which define the addresses for
the code and data segments:

Parameter Description

-ZMY_CODE=0E Defines that the code segment is to be relocated to the
hex address 0xE.

-xsm Requests a cross reference listing.

-l main.map Directs the listing output to main.map.

§ 3 Atmel Tutorial 18/9/96, 5:11 pm28

TUTORIAL

29

AA90–1

For more information about the XLINK options see the chapter XLINK
options reference.

 Viewing the listing
If you list the cross reference listing, main.map, you will see that the
module created by XLINK includes the main program module and the
r_shift library module, but not the unused l_shift library module.

USING THE XLIB LIBRARIAN

Once you have assembled and debugged a module intended for general
use, like the l_shift and r_shift modules previously described, you
can add them to a library using the XLIB Librarian.

Running the XLIB Librarian using the Embedded Workbench
Run the XLIB Librarian by choosing Librarian from the Project menu.
The XLIB window will be displayed.

You can now enter XLIB commands at the * prompt.

Running the XLIB Librarian using the command line
Start the XLIB Librarian by typing:

XLIB R

XLIB runs in an interactive mode, and displays a * prompt for you to
enter your command.

§ 3 Atmel Tutorial 18/9/96, 5:11 pm29

TUTORIAL

30

AA90–1

The first thing you need to do within XLIB is define the CPU you are
using:

DEFINE-CPU a90 R

 Giving XLIB commands
Extract the modules you want from shifts.r90 into a library called
math.r90. To do this enter the command:

FETCH-MODULES R

This prompts for the following arguments:

Prompt What you type

Source file shifts R

Destination file math R

Start module R (uses the default, which is the first in the file).

End module R (uses the default, which is the last in the file).

This creates the file math.r90 which contains the code for the l_shift
and r_shift routines.

You can confirm this by typing:

LIST-MODULES R

This prompts for the following arguments:

Prompt What you type

Object file math

List file R (to use the screen).

Start module R (to start from the first module).

End module R (to end at the last module).

Finally, leave the librarian by typing:

EXIT R

You could use the same procedure to add further modules to the math
library at any time.

§ 3 Atmel Tutorial 18/9/96, 5:11 pm30

31

AA90–1

ASSEMBLER OPTIONS
SUMMARY
This chapter gives an alphabetical summary of the assembler options,
and explains how to set the options from the Embedded Workbench or
the command line.

The options are divided into the following sections, corresponding to
the pages in the AA90 and General options in the Embedded
Workbench:

Code generation #undef
#define Include
List Target

For full reference about each option refer to the following chapter,
Assembler options reference. The Command line section, page 48,
provides information about the options which are only available in the
command line version.

§ 4 Assembler options 18/9/96, 5:11 pm31

ASSEMBLER OPTIONS SUMMARY

32

AA90–1

Setting assembler options in the Embedded Workbench
To set assembler options in the Embedded Workbench choose
Options… from the Project menu, and select AA90 in the Category
list to display the assembler options pages:

Then click the tab corresponding to the category of options you want to
view or change.

Setting assembler options from the command line
To set assembler options from the command line, you include them on
the command line, after the aa90 command. For example, when
assembling the source first, to generate a listing to the default listing
filename (first.lst):

aa90 first -L R

Some options accept a filename, included after the option letter with a
separating space. For example, to generate a listing to the file list.lst:

aa90 first -l list.lst R

Some other options accept a string that is not a filename. This is
included after the option letter, but without a space. For example, to
generate a listing to the default filename but in the subdirectory list:

aa90 first -Llist R

SETTING
ASSEMBLER
OPTIONS

§ 4 Assembler options 18/9/96, 5:12 pm32

ASSEMBLER OPTIONS SUMMARY

33

AA90–1

OPTIONS SUMMARY The following is a summary of all the assembler options. For a full
description of any option, see under the option’s category name in the
next chapter, Assembler options reference.

Option Description Section

-B Macro execution info. List

-b Make a LIBRARY module. Code generation

-c{DMEAO} Conditional list. List

-Dsymb[=xx] Define symbol. #define

-d Disable #ifdef/#endif matching. Code generation

-Enumber Max number of errors. Command line

-f filename Extend the command line. Command line

-G Open standard input as source. Command line

-Iprefix Include paths. Include

-i Included text. List

-l filename List to named file. List

-L[prefix] List to prefixed source name. List

-Mab Macro quote chars. Code generation

-mn Memory model. Target

-N No header. List

-Oprefix Set object filename prefix. Command line

-o filename Set object filename. Command line

-plines Lines/page. List

-r Generate debug information. Code generation

-S Set silent operation. Command line

-s{+|-} Case sensitive user symbols. Code generation

-T Active lines only. List

-tn Tab spacing. List

-Usymb Undefine symbol. #undef

§ 4 Assembler options 18/9/96, 5:12 pm33

ASSEMBLER OPTIONS SUMMARY

34

AA90–1

Option Description Section

-vn Processor configuration. Target

-w[string] Warnings. Code generation

-x{DI2} Cross reference. List

§ 4 Assembler options 18/9/96, 5:12 pm34

35

AA90–1

ASSEMBLER OPTIONS
REFERENCE
This chapter gives detailed information on each of the AT90S
Assembler options, divided into functional categories.

CODE GENERATION These options control the assembler’s code generation.

Embedded Workbench

Command line
-s{+|-} Case sensitive user symbols.

-d Disable #ifdef/#endif matching.

-Mab Macro quote chars.

-w[string] Warnings.

-r Generate debug information.

-b Make a LIBRARY module.

§ 5 Assembler ref 18/9/96, 5:12 pm35

ASSEMBLER OPTIONS REFERENCE

36

AA90–1

CASE SENSITIVE USER SYMBOLS (-s)

Syntax: -s{+|-}

Sets whether the assembler is sensitive to the case of user symbols:

Option Command line

Case sensitive user symbols -s+

Case insensitive user symbols -s-

By default, case sensitivity is on. This means that, for example, LABEL
and label refer to different symbols. You can choose Case insensitive
user symbols (-s-) to turn case sensitivity off, in which case LABEL
and label will refer to the same symbol.

DISABLE #IFDEF/#ENDIF MATCHING (-d)

Syntax: -d

Allows unmatched #ifdef … #endif statements to be used without
causing an error.

The checks for #ifdef … #endif matching are performed for each
module, and a #endif outside modules will therefore normally generate
an error message. Use this option to turn checking off.

This allows you to write constructs such as:

#ifdef Version1
MODULE M1
NOP
ENDMOD

#endif
MODULE M2
.
.
.
etc

MACRO QUOTE CHARS (-M)

Syntax: -Mab

Sets the characters used for the left and right quotes of each macro
argument to a and b respectively.

§ 5 Assembler ref 18/9/96, 5:12 pm36

ASSEMBLER OPTIONS REFERENCE

37

AA90–1

By default, the characters are < and >. The Macro quote chars (-M)
option allows you to change the quote characters to suit an alternative
convention or simply to allow a macro argument to contain < or >
themselves.

You can select one of four types of brackets from the drop-down list as
the macro quote characters:

For example, using the option:

-M[]

in the source you would write, for example:

print [>]

to call a macro print with > as the argument.

DISABLE WARNINGS (-w)

Syntax: -w[string]

Disables warnings.

By default, the assembler displays a warning message when it finds an
element of the source which is legal, but probably due to a programming
error (see Assembler diagnostics for details). The Disable warnings
(-w) option with no range disables all warnings. The Disable
warnings (-w) option with a range performs the following:

Range Effect

+ Enables all warnings.

- Disables all warnings.

+n Enables just warning n.

-n Disables just warning n.

+m-n Enables warnings m to n.

-m-n Disables warnings m to n.

§ 5 Assembler ref 18/9/96, 5:12 pm37

ASSEMBLER OPTIONS REFERENCE

38

AA90–1

For example, to disable just warning 0 (unreferenced label), you might
use:

aa90 prog -w-0 R

or to disable warnings 0 to 8:

aa90 prog -w-0-8 R

Only one Disable warnings (-w) option may be used on the command
line.

GENERATE DEBUG INFORMATION (-r)

Syntax: -r

Enables the inclusion of information that allows a debugger (such as
C-SPY) to be used on the program.

By default, the assembler does not generate debug information, to
reduce the size and link time of the object file. You must use the
Generate debug information (-r) option if you want to use a
debugger with the program.

MAKE A LIBRARY MODULE (-b)

Syntax: -b

Causes the object file to be a library module rather than a program
module.

By default, the assembler produces a program module ready to be linked
with XLIB. You use the Make a LIBRARY module (-b) option if you
want it to make a library module for use with XLIB.

If the NAME directive is used in the source (to specify the name of the
program module), the Make a LIBRARY module (-b) option is
ignored, that is the assembler produces a program module regardless.

§ 5 Assembler ref 18/9/96, 5:12 pm38

ASSEMBLER OPTIONS REFERENCE

39

AA90–1

#define This option allows you to define symbols.

Embedded Workbench

Command line
-Dsymb[=xx] Define symbol.

DEFINE SYMBOL (-D)

Syntax: -Dsymb[=xx]

Defines a symbol with the name symb and the value xx. If no value is
specified, 1 is used.

The Define symbol (-D) option allows a value or choice that would
otherwise have to be specified in the source file to be specified more
conveniently on the command line. For example, you could arrange your
source to produce either the test or production version of your program
dependent on whether the symbol testver was defined. To do this you
would use include sections such as:

#ifdef testver
... ; additional code lines for test version only
#endif

Then, you would select the version required in the command line as
follows:

production version: aa90 prog
test version: aa90 prog -Dtestver

§ 5 Assembler ref 18/9/96, 5:12 pm39

ASSEMBLER OPTIONS REFERENCE

40

AA90–1

Alternatively, your source might use a variable that you need to change
often. You would leave the variable undefined in the source, and use -D
to specify the value on the command line; for example:

aa90 prog -Dframerate=3 R

LIST The List options are used to cause the assembler to generate a listing, to
select the contents of the listing, and to generate other listing-type
output.

Embedded Workbench

Command line
-l filename List to named file.

-L[prefix] List to prefixed source name.

-N No header.

-i #included text.

-T Active lines only.

-c{DMEAO} Conditional list.

-B Macro execution info.

-x{DI2} Cross reference.

-plines Lines/page.

-tn Tab spacing.

§ 5 Assembler ref 18/9/96, 5:13 pm40

ASSEMBLER OPTIONS REFERENCE

41

AA90–1

LIST FILE

Causes the assembler to generate a listing and send it to the file
sourcename.lst.

When List file is selected the following list options become available:

Option Description

Include header Includes a header in the listing.

Include listing Includes the body of the listing.

Selecting Include listing makes the following options available:

Option Description

#included text Includes #include files in the listing.

Active lines only Includes only active lines in the listing.

Macro definitions Includes macro definitions in the listing.

Macro expansions Includes macro expansions in the listing.

Macro execution info Prints macro execution information on every
call of a macro.

Assembled lines only Lists only assembled lines.

Multiline code Lists the code generated by directives on
several lines if necessary.

List to named file (-l)
Syntax: -l filename

Causes the assembler to generate a listing and send it to the named file.
If no extension is specified, .lst is used. Note that you must include a
space before the filename.

By default, the assembler does not generate a listing. The -l option
turns on listing, and directs it to a specific file. To just turn on listing to
the default filename, use the -L option instead.

§ 5 Assembler ref 18/9/96, 5:13 pm41

ASSEMBLER OPTIONS REFERENCE

42

AA90–1

List to prefixed source name (-L)
Syntax: -L[prefix]

Causes the assembler to generate a listing and send it to the file
prefixsourcename.lst. Note that you must not include a space before
the prefix.

By default, the assembler does not generate a listing. To simply generate
a listing, you use the -L option without a prefix. The listing is sent to
the file with the same name as the source, but extension .lst.

The -L option lets you specify a prefix, for example to direct the list file
to a subdirectory:

aa90 prog -Llist\ R

This sends the object to list\prog.lst rather than the default
prog.lst.

-L may not be used at the same time as -l.

NO HEADER (-N)

Syntax: -N

Disables the header normally printed in the listing.

#INCLUDED TEXT (-i)

Syntax: -i

Includes #include files in the listing.

By default, the assembler does not list #include file lines since these
are often from standard files that would waste space in the listing. The
#included text (-i) option allows you to list #include files should you
so require.

ACTIVE LINES ONLY (-T)

Syntax: -T

Includes only active lines, for example not those in false #if blocks. By
default, all lines are listed.

This option is useful for reducing the size of listings by eliminating lines
that do not generate or affect code.

§ 5 Assembler ref 18/9/96, 5:13 pm42

ASSEMBLER OPTIONS REFERENCE

43

AA90–1

CONDITIONAL LIST (-c)

Syntax: -c{DMEAO}

Sets one or more of the following:

Option Command line

Disable listing D

Macro definitions M

No macro expansions E

Assembled lines only A

Multiline code O

MACRO EXECUTION INFO (-B)

Syntax: -B

Causes the assembler to print macro execution information to the
standard output stream on every call of a macro. The information
consists of:

◆ The name of the macro.

◆ The definition of the macro.

◆ The arguments to the macro.

◆ The expanded text of the macro.

CROSS-REFERENCE (-x)

Syntax: -x{DI2}

Causes the assembler to generate a cross-reference list at the end of the
listing. See the chapter Assembler file formats for details.

The following options are available:

Option Command line

#defines D

Internal symbols I

Dual line spacing 2

§ 5 Assembler ref 18/9/96, 5:13 pm43

ASSEMBLER OPTIONS REFERENCE

44

AA90–1

LINES/PAGE (-p)

Syntax: -plines

Sets the number of lines per page to lines, which must be in the range
10 to 150.

TAB SPACING (-t)

Syntax: -tn

Sets the number of character positions per tab stop to n, which must be
in the range 2 to 9.

By default, the assembler sets eight character positions per tab stop.

#undef The #undef option allows you to undefine the predefined symbols.

Embedded Workbench

Command line
-Usymb Undefine symbol.

UNDEFINE SYMBOL (-U)

Syntax: -Usymb

Undefines the symbol symb.

By default, the assembler provides certain pre-defined symbols; see
Pre-defined symbols, page 55. The Undefine symbol (-U) option allows
you to undefine such a pre-defined symbol to make its name available

§ 5 Assembler ref 18/9/96, 5:13 pm44

ASSEMBLER OPTIONS REFERENCE

45

AA90–1

for your own use through a subsequent Define symbol (-D) option or
source definition.

To undefine a symbol, deselect it in the Predefined symbols list.

To use the name of the predefined symbol __TIME__ for your own
purposes, you could undefine it with:

aa90 prog -U __TIME__ R

INCLUDE The Include option allows you to define the include path for the
assembler.

Embedded Workbench

Command line
-Iprefix Include paths.

INCLUDE PATHS (-I)

Syntax: -Iprefix

Adds the #include file search prefix prefix.

By default, the assembler searches for #include files only in the
current working directory. The Include paths (-I) option allows you
to give the assembler the names of directories which it will also search if
it fails to find the file in the current working directory.

§ 5 Assembler ref 18/9/96, 5:13 pm45

ASSEMBLER OPTIONS REFERENCE

46

AA90–1

For example, using the options:

-Ic:\global\ -Ic:\thisproj\headers\

and then writing:

#include "asmlib.hdr" R

in the source, will make the assembler search first for file asmlib.hdr,
then for file c:\global\asmlib.hdr, and finally for file
c:\thisproj\headers\asmlib.hdr.

TARGET The Target options specify the processor and memory model for the
assembler and C compiler.

Embedded Workbench

Command line
-vn Processor configuration.

-mn Memory model.

§ 5 Assembler ref 18/9/96, 5:13 pm46

ASSEMBLER OPTIONS REFERENCE

47

AA90–1

PROCESSOR CONFIGURATION (-v)

Syntax: -vn

Selects the processor configuration from one of:

Option Command line

Max 256 byte data, 8 Kbyte code -v0

Max 64 Kbyte data, 8 Kbyte code -v1

Max 256 bytes data, 128 Kbytes code -v2

Max 64 Kbytes data, 128 Kbytes code -v3

Versions -v4 to -v6 are for future expansion.

If no Chip option (-v) option is specified, the assembler uses -v0 by
default.

MEMORY MODEL (-m)

Syntax: -mn

Selects the memory model from the following:

Option Command line

Tiny -mt

Small -ms

Large* -ml

* Note that this option is included for future expansion.

§ 5 Assembler ref 18/9/96, 5:13 pm47

ASSEMBLER OPTIONS REFERENCE

48

AA90–1

COMMAND LINE The following additional options are available from the command line.

-Enumber Max number of errors.

-f filename Extend the command line.

-G Open standard input as source.

-0prefix Set object filename prefix.

-o filename Set object filename.

-S Set silent operation.

MAX NUMBER OF ERRORS (-E)

Syntax: -Enumber

Sets the maximum number of errors the assembler reports.

By default, the maximum number is 100. The Max number of errors
(-E) option allows you to decrease or increase this number, for example,
to see more errors in a single assembly.

EXTEND THE COMMAND LINE (-f)

Syntax: -f filename

Extends the command line with text read from the file filename.xcl.
Note that there must be a space between the option itself and the
filename.

The -f option is particularly useful where there are a large number of
options which are more-conveniently placed in a file than on the
command line itself. For example, to run the assembler with further
options taken from the file asmopt.xcl, you might use:

aa90 prog -f asmopt R

OPEN STANDARD INPUT AS SOURCE (-G)

Syntax: -G

Causes the assembler to read the source from the standard input stream,
rather than a specified source file.

When -G is used, no source filename may be specified.

§ 5 Assembler ref 18/9/96, 5:13 pm48

ASSEMBLER OPTIONS REFERENCE

49

AA90–1

SET OBJECT FILENAME PREFIX (-O)

Syntax: -Oprefix

Set the prefix to be used on the filename of the object. Note that you
must not include a space before the prefix.

By default the prefix is null, so the object filename corresponds to the
source filename (unless -o is used). The -O option lets you specify a
prefix, for example to direct the object file to a subdirectory:

aa90 prog -Oobj\ R

This sends the object to obj\prog.r90 rather than the default
prog.r90.

-O may not be used at the same time as -o.

SET OBJECT FILENAME (-o)

Syntax: -o filename

Sets the filename to be used for the object. Note that you must include a
space before the filename. If no extension is specified, .r90 is used.

By default the assembler uses the source filename with the extension
changed to .r90. The -o option lets you use an alternative filename for
the object.

For example, the following command puts the object to the file obj.r90
instead of the default prog.r90:

aa90 prog -o obj R

Note that you must include a space between the option itself and the
filename.

-o may not be used at the same time as -O.

SET SILENT OPERATION (-S)

Syntax: -S

Causes the assembler to operate without sending any messages to the
standard output stream.

By default, the assembler sends various inessential messages to the
terminal via the standard output stream. You can use the -S option to

§ 5 Assembler ref 18/9/96, 5:14 pm49

ASSEMBLER OPTIONS REFERENCE

50

AA90–1

prevent this, reducing the amount of screen clutter. The assembler
sends error and warning messages to the error output stream, so they
appear on the terminal regardless.

§ 5 Assembler ref 18/9/96, 5:14 pm50

51

AA90–1

ASSEMBLER FILE
FORMATS
This chapter describes the source format for the AT90S Assembler, and
the format of assembler listings.

SOURCE FORMAT The format of an assembler source line is as follows:

[label [:]] operation [operands] [; comment]

where the components are as follows:

label A label, which is assigned the value and type of the
current location counter (PLC). The :(colon) is
optional if the label starts in the first column.

operation An assembler instruction or directive. This must not
start in the first column.

operands One or two operands, separated by commas.

comment A comment, preceded by a ; (semi-colon).

The fields can be separated by spaces or tabs.

A source line may not exceed 255 characters.

Tab characters (ASCII 09H), are expanded according to the most
common practice; ie to columns 8, 16, 24 etc.

A * in the first column indicates a comment line.

Expressions can consist of operands and operators.

The assembler will accept a wide range of expressions, including both
arithmetic and logical operations. All operators use 32-bit two’s
complement integers, and range checking is only performed when a
value is used to generate code.

Expressions are evaluated from left to right, unless this order is
overridden by the priority of operators.

EXPRESSIONS AND
OPERATORS

§ 6 Assembler formats 18/9/96, 5:14 pm51

ASSEMBLER FILE FORMATS

52

AA90–1

The valid operands in an expression are:

◆ User-defined symbols and labels.

◆ Constants, excluding floating point constants.

◆ The location counter (PLC) symbol, $.

These are described in greater detail in the following sections.

The valid operators are described in the chapters Assembler operator
summary, and Assembler operator reference.

TRUE AND FALSE

In expressions a zero value is considered FALSE, and a non-zero value
is considered TRUE.

Conditional expressions return the value 0 for FALSE and 1 for TRUE.

USING SYMBOLS IN RELOCATABLE EXPRESSIONS

Expressions that include symbols in relocatable segments cannot be
resolved at assembly time, because they depend on where the segments
are located by XLINK.

Such expressions are evaluated and resolved at link time, by XLINK.
There are no restrictions on the expression; any operator can be used on
symbols from any segment, or any combination of segments.

For example, a program could define the segments DATA and CODE as
follows:

NAME prog1
EXTERN third
RSEG DATA

first DB 5
second DB 3

ENDMOD
MODULE prog2
RSEG CODE

start …

Then in segment CODE the following instructions are legal:

LDI R27,first
LDI R27,first+1

§ 6 Assembler formats 18/9/96, 5:14 pm52

ASSEMBLER FILE FORMATS

53

AA90–1

LDI R27,1+first
LDI R27,(first/second)*third

SYMBOLS

User-defined symbols can be up to 255 characters long, and all
characters are significant.

Symbols must begin with a letter, a–z or A–Z, ? (question mark), @ (at),
or _ (underline). Symbols can include the digits 0–9 and $ (dollar). For
user-defined symbols case is significant. For built-in symbols like
instructions, registers, operators, and directives case is insignificant.

LABELS

Symbols used for memory locations are referred to as labels.

Location counter
The location counter is called $. For example:

RJMP $; Loop forever

INTEGER CONSTANTS

Since all IAR Systems Assemblers use 32-bit two’s complement internal
arithmetic, integers have a (signed) range from -2147483648 to
2147483647.

Constants are written as a sequence of digits with an optional - (minus)
sign in front to indicate a negative number.

Commas and decimal points are not permitted.

The following number bases are supported:

Hexadecimal
Hexadecimal numbers can be written in any of the following formats:

Format Example Value

0xhex-digits 0x43 67 in decimal.

H'hex-digits H'43 67 in decimal.

hex-digitsH 43H 67 in decimal*.

* Note that if the first digit is A–F, a leading zero must be included; for
example, OAH.

§ 6 Assembler formats 18/9/96, 5:14 pm53

ASSEMBLER FILE FORMATS

54

AA90–1

Octal
Octal numbers can be written as follows:

Format Example Value

'\octal-digits' '\10' 8 in decimal.

Q'octal-digits Q'10 8 in decimal.

octal-digitsQ 10Q 8 in decimal.

Decimal
Decimal numbers can be written as follows:

Format Example Value

digits 123 123 in decimal.

D'digits D'123 123 in decimal.

Binary
Binary numbers can be written as follows:

Format Example Value

B'binary-digits B'10 2 in decimal.

binary-digitsB 10B 2 in decimal.

ASCII CHARACTER CONSTANTS

ASCII constants can consist of between zero and four characters
enclosed in single quotes. Only printable characters and spaces may be
used in ASCII strings.

If the quote character itself is to be accessed, two consecutive quotes
must be used:

Format Value

'ABCD' ABCD (four characters).

"ABCD" ABCD'\0' (five characters, the last ASCII null).

'A''B' A'B

'A''' A'

'''' (4 quotes) '

§ 6 Assembler formats 18/9/96, 5:14 pm54

ASSEMBLER FILE FORMATS

55

AA90–1

Format Value

'' (2 quotes) Empty string (value=0).

"" Empty string (an ASCII null character).

\' '

\\ \

PRE-DEFINED SYMBOLS

The AT90S Assembler defines a set of symbols for use in assembler
source files. The symbols provide information about the current
assembly, allowing you to test them in pre-processor directives or
include them in the assembled code.

Symbol Value

__DATE__ Current date in Mmm dd yyy format.

__FILE__ Current source filename.

__IAR_SYSTEMS_ASM IAR assembler identifier.

__LINE__ Current source line number.

__TID__ Target identity, consisting of two bytes.
The high byte is the target identity, which
is 90 for the AT90S. The low byte is the
processor option *16. The possible values
are therefore as follows:

Processor option Value

-v0 AT90S2312 0x5A00

-v1 AT90S8414 0x5A10

-v2 0x5A20

-v3 0x5A30

-v4 0x5A40

-v5 0x5A50

-v6 0x5A60

__TIME__ Current time in hh:mm:ss format.

§ 6 Assembler formats 18/9/96, 5:14 pm55

ASSEMBLER FILE FORMATS

56

AA90–1

Including symbol values in code
To include a symbol value in the code, you use the symbol in one of the
data-definition directives.

For example, to include the time and date of assembly as a string for
display by the program:

timdat DB __TIME__,",",__DATE__,0 ; time and date
...
LD WA,timdat ; load address of string
CALL printstring ; routine to print string

Testing symbols for conditional assembly
To test a symbol at assembly-time, you use one of the conditional
assembly directives.

For example, in a source file written for use on any one of the AT90S
family members, you might want to assemble appropriate code for a
specific processor. You could do this using the __TID__ symbol as
follows:

#define TARGET ((__TID__ & 0x0F0)>>4)
#if (TARGET==1)
.
.
.
#else
.
.
.
#endif

REGISTER SYMBOLS Definitions of the symbols for registers, including standard SFRs, are
supplied in the following files:

File Processor

io2312.h AT90S2312
io8414.h AT90S8414

§ 6 Assembler formats 18/9/96, 5:14 pm56

ASSEMBLER FILE FORMATS

57

AA90–1

LISTING FORMAT The format of the AT90S Assembler listing is as follows:

###
#
IAR Systems A90 Assembler Vx.xx
#
Target option = Relative jumps reach entire addr space
Source file = play.s90
List file = play.lst
Object file = play.r90
Command line = play -r -L
#
(c) Copyright IAR Systems 1996
###

 1 00000000 NAME play
 2 00000000
 3 00000000 LSTXRF+
 4 00000018 portb VAR 0x18
 5 00000000 RSEG DATA
 6 00000000 buffer DS 256
 7 00000200
 19 00000000 RSEG CODE
 20 00000000 play
 20.1 00000000 LOCAL loop
 20.2 00000000 LDI R27,HWRD(buffer)
 20.3 00000002 LDI R26,LWRD(buffer)
 20.4 00000004 9FEF LDI R25,255
 20.5 00000006 0D90 loop LD R0,X+
 20.6 00000008 08BA OUT portb,R0
 20.7 0000000A 9A95 DEC R25
 20.8 0000000C E1F7 BRNE loop
 20.9 0000000E ENDM
 21 0000000E END

Segment Type Mode

CODE UNTYPED REL
DATA UNTYPED REL

Label Mode Type Segment Value/Offset

_args ABS CONST PUB LOCAL UNTYP. ASEG 0
buffer REL CONST PUB UNTYP. DATA 0
loop REL CONST PUB LOCAL UNTYP. CODE 6
portb ABS VAR UNTYP. ASEG 18

##############################
CRC:86EA
Errors: 0
Warnings: 0
Bytes: 14
##############################

Macro generated lines

Assembler listing

Header

CRC

§ 6 Assembler formats 18/9/96, 5:14 pm57

ASSEMBLER FILE FORMATS

58

AA90–1

The header, with assembly parameters, is only output on listings
directed to files other than the terminal.

Assembly list information is put into four fields:

 20.5 00000006 0D90 loop LD R0,X+
 20.6 00000008 08BA OUT portb,R0
 20.7 0000000A 9A95 DEC R25
 20.8 0000000C E1F7 BRNE loop
 20.9 0000000E ENDM
 21 0000000E END

Source line number

Address field

Data field

Source line

Source line number
The line number in the source file.

Lines generated by macros will, if listed, have . (full stop) in the source
line number field.

Address and data fields
These are always listed in hexadecimal notation.

Source line
Lists the source file line.

SYMBOL AND CROSS REFERENCE TABLE

If the LSTXRF+ directive has been included, or the -x command line
option has been specified, the following symbol and cross reference
table is produced:

Segment Type Mode

CODE UNTYPED REL
DATA UNTYPED REL

Label Mode Type Segment Value/Offset

_args ABS CONST PUB LOCAL UNTYP. ASEG 0
buffer REL CONST PUB UNTYP. DATA 0
loop REL CONST PUB LOCAL UNTYP. CODE 6
portb ABS VAR UNTYP. ASEG 18

Segments

Symbols

§ 6 Assembler formats 18/9/96, 5:14 pm58

ASSEMBLER FILE FORMATS

59

AA90–1

The following information is provided for each symbol in the table:

Information Description

Label The label’s user-defined name.

Mode ABS (Absolute), or REL (Relative).

Type The label’s type.

Segment The name of the segment this label is defined
relative to.

Value/Offset The value (address) of the label within the current
module, relative to the beginning of the current
segment.

OUTPUT FORMATS The relocatable and absolute output is in the same format for all
assemblers, because object code is always meant to be processed by the
IAR Systems XLINK Linker.

The output from XLINK, however, is in absolute formats normally
compatible with the chip vendor’s debugger programs (monitors), as
well as with PROM programmers and stand-alone emulators from
independent sources.

§ 6 Assembler formats 18/9/96, 5:14 pm59

ASSEMBLER FILE FORMATS

60

AA90–1§ 6 Assembler formats 18/9/96, 5:14 pm60

61

AA90–1

ASSEMBLER OPERATOR
SUMMARY
This chapter summarizes the assembler operators, classified according
to their precedence. A full alphabetical reference list of operators is
given in the next chapter, Assembler operator reference.

PRECEDENCE OF OPERATORS

Each operator has a precedence number assigned to it which determines
the order in which the operator and its operands are evaluated. The
precedence numbers range from 1 (the highest precedence, ie first
evaluated) to 7 (the lowest precedence, ie last evaluated).

The following rules determine how expressions are evaluated:

◆ The highest precedence (lowest number) operators are evaluated
first, then the next highest precedence operators, and so on until
the lowest precedence operators are evaluated.

◆ Operators of equal precedence are evaluated from left to right in the
expression.

◆ Parentheses (and) can be used to group operators and operands
and to control the order in which the expressions are evaluated. For
example, the following expression evaluates to 1:

7/(1+(2*3))

The following tables give a summary of the operators, in order of
priority. Synonyms, where available, are shown in brackets after the
operator name:

§ 7 Operator summary 18/9/96, 5:14 pm61

ASSEMBLER OPERATOR SUMMARY

62

AA90–1

UNARY OPERATORS – 1

+ Unary plus.

– Unary minus.

NOT (!) Logical NOT.

LOW Low byte.

HIGH High byte.

BYTE2 Second byte.

BYTE3 Third byte.

LWRD Low word.

HWRD High word.

DATE Current date/time.

SFB Segment begin.

SFE Segment end.

SIZEOF Segment size.

BITNOT (~) Bitwise NOT.

MULTIPLICATIVE ARITHMETIC OPERATORS – 2

* Multiplication.

/ Division.

MOD (%) Modulo.

ADDITIVE ARITHMETIC OPERATORS – 3

+ Addition.

– Subtraction.

SHIFT OPERATORS – 4

SHR (>>) Logical shift right.

SHL (<<) Logical shift left.

§ 7 Operator summary 18/9/96, 5:14 pm62

ASSEMBLER OPERATOR SUMMARY

63

AA90–1

AND OPERATORS – 5

AND (&&) Logical AND.

BITAND (&) Bitwise AND.

OR OPERATORS – 6

OR (||) Logical OR.

XOR Logical exclusive OR.

BITOR (|) Bitwise OR.

BITXOR (^) Bitwise exclusive OR.

COMPARISON OPERATORS – 7

EQ (=, ==) Equal.

NE (<>, !=) Not equal.

GT (>) Greater than.

LT (<) Less than.

UGT Unsigned greater than.

ULT Unsigned less than.

GE (>=) Greater than or equal.

LE (<=) Less than or equal.

§ 7 Operator summary 18/9/96, 5:14 pm63

ASSEMBLER OPERATOR SUMMARY

64

AA90–1§ 7 Operator summary 18/9/96, 5:14 pm64

65

AA90–1

ASSEMBLER OPERATOR
REFERENCE
This section gives an alphabetical list of the assembler operators with a
full description of each one.

The format of each operator description is as follows:

Precedence

Examples

Description

Name

NAME

The operator name, and where appropriate, any synonyms for the
operator, and the operator precedence.

The operator name is followed by a description of the operator.

DESCRIPTION

A detailed description covering the operator’s most general use.

EXAMPLES

Examples, illustrating typical applications of the operator and clarifying
any special cases.

§ 8 Operators 18/9/96, 5:15 pm65

66

AA90–1

ASSEMBLER OPERATOR: *

* Multiplication (2).

DESCRIPTION

* produces the product of its two operands. The operands are taken as
signed 32-bit integers and the result is also a signed 32-bit integer.

EXAMPLES

2*2 → 4
-2*2 → -4

+ Unary plus (1).

DESCRIPTION

Unary plus operator.

EXAMPLES

+3 → 3
3*+2 → 6

+ Addition (3).

DESCRIPTION

The + addition operator produces the sum of the two operands which
surround it. The operands are taken as signed 32-bit integers and the
result is also a signed 32-bit integer.

EXAMPLES

92+19 → 111
-2+2 → 0
-2+-2 → -4

§ 8 Operators 18/9/96, 5:15 pm66

67

AA90–1

ASSEMBLER OPERATOR: –

– Unary minus (1).

DESCRIPTION

The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer and the result of
the operator is the two’s complement negation of that integer.

– Subtraction (3).

DESCRIPTION

The subtraction operator produces the difference when the right
operand is taken away from the left operand. The operands are taken as
signed 32-bit integers and the result is also signed 32-bit integer.

EXAMPLES

92-19 → 73
-2-2 → -4
-2--2 → 0

/ Division (2).

DESCRIPTION

/ produces the integer quotient of the left operand divided by the right
operator. The operands are taken as signed 32-bit integers and the result
is also a signed 32-bit integer.

EXAMPLES

8/2 → 4
-12/3 → -4

§ 8 Operators 18/9/96, 5:15 pm67

68

AA90–1

AND (&&)

AND (&&) Logical AND (5).

DESCRIPTION

Use AND to perform logical AND between its two integer operands. If
both operands are non-zero the result is 1; otherwise it is zero.

EXAMPLES

1010B AND 0011B → 1
1010B AND 0101B → 1
1010B AND 0000B → 0

BITAND (&) Bitwise AND (5).

DESCRIPTION

Use BITAND to perform bitwise AND between the integer operands.

EXAMPLES

1010B BITAND 0011B → 0010B
1010B BITAND 0101B → 0000B
1010B BITAND 0000B → 0OOOB

BITNOT (~) Bitwise NOT (1).

DESCRIPTION

Use BITNOT to perform bitwise NOT on its operand.

EXAMPLES

BITNOT 1010B → 11111111111111111111111111110101B

§ 8 Operators 18/9/96, 5:15 pm68

69

AA90–1

BITOR (|)

BITOR (|) Bitwise OR (6).

DESCRIPTION

Use BITOR to perform bitwise OR on its operands.

EXAMPLES

1010B BITOR 0101B → 1111B
1010B BITOR 0000B → 1010B

BITXOR (^) Bitwise exclusive OR (6).

DESCRIPTION

Use BITXOR to perform bitwise XOR on its operands.

EXAMPLES

1010B BITXOR 0101B → 1111B
1010B BITXOR 0011B → 1001B

BYTE2 Second byte (1).

DESCRIPTION

BYTE2 takes a single operand, which is interpreted as an unsigned, 32-
bit integer value. The result is the middle-low byte (bits 15 to 8) of the
operand.

EXAMPLES

BYTE2 0x12345678 → 0x56

§ 8 Operators 18/9/96, 5:15 pm69

70

AA90–1

BYTE3

BYTE3 Third byte (1).

DESCRIPTION

BYTE3 takes a single operand, which is interpreted as an unsigned, 32-
bit integer value. The result is the middle-high byte (bits 23 to 16) of the
operand.

EXAMPLES

BYTE3 0x12345678 → 0x34

DATE Current date/time.

DESCRIPTION

Use the DATE operator to give the moment when the current assembly
began.

The DATE operator takes an absolute argument (expression) and
returns:

DATE 1 Current second (0–59).
DATE 2 Current minute (0–59).
DATE 3 Current hour (0–23).
DATE 4 Current day (1–31).
DATE 5 Current month (1–12).
DATE 6 Current year MOD 100 (1983 → 83).

EXAMPLES

To assemble the date of assembly:

today DB DATE 5, DATE 4, DATE 3

§ 8 Operators 18/9/96, 5:15 pm70

71

AA90–1

EQ (=, ==)

EQ (=, ==) Equal (7).

DESCRIPTION

EQ evaluates to 1 (true) if its two operands are identical in value, or to 0
(false) if its two operands are not identical in value.

EXAMPLES

1 EQ 2 → 0
2 EQ 2 → 1
'ABC' EQ 'ABCD' → 0

GE (>=) Greater than or equal (7).

DESCRIPTION

GE evaluates to 1 (true) if the left operand is equal to or has a higher
numeric value than the right operand.

EXAMPLES

1 GE 2 → 0
2 GE 1 → 1
1 GE 1 → 0

GT (>) Greater than (7).

DESCRIPTION

GT evaluates to 1 (true) if the left operand has a higher numeric value
than the right operand.

EXAMPLES

-1 GT 1 → 0
2 GT 1 → 1
1 GT 1 → 0

§ 8 Operators 18/9/96, 5:15 pm71

72

AA90–1

HIGH

HIGH Second byte (1).

DESCRIPTION

HIGH takes a single operand to its right which is interpreted as an
unsigned, 16-bit integer value. The result is the unsigned 8-bit integer
value of the higher order byte of the operand.

EXAMPLES

HIGH 1234ABCDh → ABh

HWRD High word (1).

DESCRIPTION

HWRD takes a single operand, which is interpreted as an unsigned, 32-bit
integer value. The result is the high word (bits 31 to 16) of the operand.

EXAMPLES

HWRD 0x12345678 → 0x1234

LE (<=) Less than or equal (7).

DESCRIPTION

LE evaluates to 1 (true) if the left operand has a lower or equal numeric
value to the right operand.

EXAMPLES

1 LE 2 → 1
2 LE 1 → 0
1 LE 1 → 1

§ 8 Operators 18/9/96, 5:15 pm72

73

AA90–1

LOW

LOW Low byte (1).

DESCRIPTION

LOW takes a single operand, which is interpreted as an unsigned, 32-bit
integer value. The result is the unsigned, 8-bit integer value of the lower
order byte of the operand.

EXAMPLES

LOW 1234ABCDh → CDh

LT (<) Less than (7).

DESCRIPTION

LT evaluates to 1 (true) if the left operand has a lower numeric value
than the right operand.

EXAMPLES

-1 LT 2 → 1
2 LT 1 → 0
2 LT 2 → 0

LWRD Low word (1).

DESCRIPTION

LWRD takes a single operand, which is interpreted as an unsigned, 32-bit
integer value. The result is the low word (bits 15 to 0) of the operand.

EXAMPLES

LWRD 0x12345678 → 0x5678

§ 8 Operators 18/9/96, 5:15 pm73

74

AA90–1

MOD (%)

MOD (%) Modulo (2).

DESCRIPTION

MOD produces the remainder from the integer division of the left
operand by the right operand. The operands are taken as signed, 32-bit
integers and the result is also a signed, 32-bit integer.

X MOD Y is equivalent to X-Y*(X/Y) using integer division.

EXAMPLES

2 MOD 2 → 0
12 MOD 7 → 5
3 MOD 2 → 1

NE (<>, !=) Not equal (7).

DESCRIPTION

NE evaluates to 0 (false) if its two operands are identical in value or to 1
(true) if its two operands are not identical in value.

EXAMPLES

1 NE 2 → 1
2 NE 2 → 0
'A' NE 'B' → 1

NOT (!) Logical NOT (1).

DESCRIPTION

Use NOT to negate a logical argument.

EXAMPLES

NOT 0101B → 0
NOT 0000B → 1

§ 8 Operators 18/9/96, 5:15 pm74

75

AA90–1

OR (||)

OR (||) Logical OR (6).

DESCRIPTION

Use OR to perform a logical OR between two integer operands.

EXAMPLES

1010B OR 0000B → 1
0000B OR 0000B → 0

SFB Segment begin (1).

SYNTAX

SFB(segment [{+ | -} offset])

PARAMETERS

segment The name of a relocatable segment, which must be
defined before SFB is used.

offset An optional offset from the start address. The
parentheses are optional if offset is omitted.

DESCRIPTION

SFB accepts a single operand to its right. The operand must be the name
of a relocatable segment. The operator evaluates to the absolute address
of the first byte of that segment. This evaluation takes place at linking
time.

EXAMPLES

 NAME demo
 RSEG CODE
start DW SFB(CODE)

Even if the above code is linked with many other modules, start will
still be set to the address of the first byte of the segment.

§ 8 Operators 18/9/96, 5:15 pm75

76

AA90–1

SFE

SFE Segment end (1).

SYNTAX

SFE (segment [{+ | -} offset])

PARAMETERS

segment The name of a relocatable segment, which must be
defined before SFE is used.

offset An optional offset from the start address. The
parentheses are optional if offset is omitted.

DESCRIPTION

SFE accepts a single operand to its right. The operand must be the name
of a relocatable segment. The operator evaluates to the segment start
address plus the segment size. This evaluation takes place at linking
time.

EXAMPLES

 NAME demo
 RSEG CODE
end DW SFE(CODE)

Even if the above code is linked with many other modules, end will still
be set to the address of the last byte of the segment.

SHL (<<) Logical shift left (4).

DESCRIPTION

Use SHL to shift the left operand to the left. The number of bits to shift
is specified by the right operand, interpreted as an integer value
between 0 and 32.

EXAMPLES

00011100B SHL 3 → 11100000B
00000111111111111B SHL 5 → 11111111111100000B
14 SHL 1 → 28

§ 8 Operators 18/9/96, 5:15 pm76

77

AA90–1

SHR (>>) Logical shift right (4).

DESCRIPTION

Use SHR to shift the left operand to the right. The number of bits to shift
is specified by the right operand, interpreted as an integer value
between 0 and 32.

EXAMPLES

01110000B SHR 3 → 00001110B
1111111111111111B SHR 20 → 0
14 SHR 1 → 7

SIZEOF Segment size (1).

SYNTAX

SIZEOF segment

PARAMETERS

segment The name of a relocatable segment, which must be
defined before SIZEOF is used.

DESCRIPTION

SIZEOF generates SFE-SFB for its argument, which should be the name
of a relocatable segment; ie it calculates the size in bytes of a segment.
This is done when modules are linked together.

EXAMPLES

 NAME demo
 RSEG CODE
size DW SIZEOF CODE

sets size to the size of segment CODE.

SHR (>>)

§ 8 Operators 18/9/96, 5:15 pm77

78

AA90–1

UGT

UGT Unsigned greater than (7).

DESCRIPTION

UGT evaluates to 1 (true) if the left operand has a larger absolute value
than the right operand.

EXAMPLES

2 UGT 1 → 1
-1 UGT 1 → 1

ULT Unsigned less than (7).

DESCRIPTION

ULT evaluates to 1 (true) if the left operand has a smaller absolute value
than the right operand.

EXAMPLES

1 ULT 2 → 1
-1 ULT 2 → 0

XOR Logical exclusive OR (6).

DESCRIPTION

Use XOR to perform logical XOR on its two operands.

EXAMPLES

0101B XOR 1010B → 0
0101B XOR 0000B → 1

§ 8 Operators 18/9/96, 5:15 pm78

79

AA90–1

ASSEMBLER DIRECTIVES
SUMMARY
This chapter gives an alphabetical summary of the assembler directives.

The directives are divided into the following sections:

Module control Macro processing
Symbol control Listing control
Segment control C-style preprocessor
Value assignment Data definition or allocation
Conditional assembly Assembler control

For a full description of any directive, see under the directive’s category
name in the next chapter, Assembler directives reference.

DIRECTIVES SUMMARY The following table gives a summary of all the assembler directives.

Option Description Section

#define Assigns a value to a label. C-style preprocessor.

#elif Introduces a new condition C-style preprocessor.
in an #if…#endif block.

#else Assembles instructions if a C-style preprocessor.
condition is false.

#endif Ends a #if, #ifdef, or C-style preprocessor.
#ifndef block.

#error Generates an error. C-style preprocessor.

#if Assembles instructions if a C-style preprocessor.
condition is true.

#ifdef Assembles instructions if a C-style preprocessor.
symbol is defined.

#ifndef Assembles instructions if a C-style preprocessor.
symbol is undefined.

#include Includes a file. C-style preprocessor.

§ 9 Directives summary 18/9/96, 5:16 pm79

ASSEMBLER DIRECTIVES SUMMARY

80

AA90–1

Option Description Section

#undef Undefines a label. C-style preprocessor.

$ Includes a file. Assembler control.

/*comment*/ C-style comment delimiter. Assembler control.

// C++ style comment delimiter. Assembler control.

= Assigns a permanent value Value assignment.
local to a module.

ALIAS Assigns a permanent value Value assignment.
local to a module.

ALIGN Aligns the program counter Segment control.
by inserting zero-filled bytes.

ASEG Begins an absolute segment. Segment control.

ASSIGN Assigns a temporary value. Value assignment.

CASEOFF Disables case sensitivity. Assembler control.

CASEON Enables case sensitivity. Assembler control.

COL Sets the number of columns Listing control.
per page.

COMMON Begins a common segment. Segment control.

DB Generates 8-bit byte constants. Data definition or
allocation.

DD Generates 32-bit double word Data definition or
constants. allocation.

DEFINE Defines a file-wide value. Value assignment.

DP Generates 24-bit double word Data definition or
constants. allocation.

DS Allocates space for 8-bit bytes. Data definition or
allocation.

DW Generates 16-bit word Data definition or
constants. allocation.

ELSE Assembles instructions if a Conditional assembly.
condition is false.

§ 9 Directives summary 18/9/96, 5:16 pm80

ASSEMBLER DIRECTIVES SUMMARY

81

AA90–1

Option Description Section

ELSEIF Specifies a new condition in Conditional assembly.
an IF…ENDIF block.

END Terminates the assembly of Module control.
the last module in a file.

ENDIF Ends an IF block. Conditional assembly.

ENDM Ends a macro definition. Macro processing.

ENDMOD Terminates the assembly of Module control.
the current module.

ENDR Ends a repeat structure. Macro processing.

EQU Assigns a permanent value Value assignment.
local to a module.

EVEN Aligns the program counter Segment control.
to an even address.

EXITM Exits prematurely from a Macro processing.
macro.

EXPORT Exports symbols to other Symbol control.
modules.

EXTERN Imports an external symbol. Symbol control.

IF Assembles instructions if a Conditional assembly.
condition is true.

IMPORT Imports an external symbol. Symbol control.

LIBRARY Begins a library module. Module control.

LIMIT Checks a value against limits. Value assignment.

LOCAL Creates symbols local to a Macro processing.
macro.

LSTCND Controls conditional assembly Listing control.
 listing.

LSTCOD Controls multi-line code listing. Listing control.

LSTEXP Controls the listing of macro Listing control.
generated lines.

§ 9 Directives summary 18/9/96, 5:16 pm81

ASSEMBLER DIRECTIVES SUMMARY

82

AA90–1

Option Description Section

LSTMAC Controls the listing of macro Listing control.
definitions.

LSTOUT Controls assembly listing Listing control.
output.

LSTPAG Controls the formatting of Listing control.
output into pages.

LSTREP Controls the listing of lines Listing control.
generated by repeat directives.

LSTXRF Generates a cross reference Listing control.
table.

MACRO Defines a macro. Macro processing.

MODULE Begins a library module. Module control.

NAME Begins a program module. Module control.

ORG Sets the location counter. Segment control.

PAGE Generates a new page. Listing control.

PAGSIZ Sets the number of lines per Listing control.
page.

PROGRAM Begins a program module. Module control.

PUBLIC Exports symbols to other Symbol control.
modules.

RADIX Sets the default base. Assembler control.

REPT Assembles instructions a Macro processing.
specified number of times.

REPTC Repeats and substitutes Macro processing.
characters.

REPTI Repeats and substitutes strings. Macro processing.

RSEG Begins a relocatable segment. Segment control.

sfrb Creates byte-access SFR labels. Value assignment.

SFRTYPE Specifies SFR attributes. Value assignment.

§ 9 Directives summary 18/9/96, 5:16 pm82

ASSEMBLER DIRECTIVES SUMMARY

83

AA90–1

Option Description Section

sfrw Creates word-access SFR labels. Value assignment.

STACK Begins a stack segment. Segment control.

VAR Assigns a temporary value. Value assignment.

§ 9 Directives summary 18/9/96, 5:16 pm83

ASSEMBLER DIRECTIVES SUMMARY

84

AA90–1§ 9 Directives summary 18/9/96, 5:16 pm84

85

AA90–1

ASSEMBLER DIRECTIVES
REFERENCE
This chapter gives a list of the AT90S directives, classified according to
their function, with a full description of their operation, and the options
available for each one.

The format of each section is as follows:

Syntax

Summary

Class

Parameters

Description

Examples

85

SYMBOL CONTROL DIRECTIVES

SYMBOL CONTROL
DIRECTIVES

These directives control how symbols are shared between modules.

Directive Description

PUBLIC (EXPORT) Exports symbols to other modules.

EXTERN (IMPORT) Imports an external symbol.

SYNTAX

PUBLIC symbol [,symbol] …

EXTERN symbol [,symbol] …

PARAMETERS

symbol Symbol to be imported or exported.

DESCRIPTION

Exporting symbols to other modules
Use PUBLIC to make one or more symbols available to other modules.
The symbols declared as PUBLIC can only be assigned values by using
them as labels. PUBLIC declared symbols can be relocated or absolute,
and can also be used in expressions (with the same rules as for other
symbols).

Importing symbols
Use EXTERN to import an untyped external symbol.

EXAMPLES

The following example defines a subroutine to print an error message,
and exports the entry address err so that it can be called from other
modules.

 1 00000000 NAME error

 2 00000000 EXTERN print

 3 00000000 PUBLIC err

 4 00000000

 5 00000000 err CALL print

 6 00000004 2A2A2A2A2A45 DB "*****Error****"

 7 00000013 0895 RET

 8 00000015 END err

§10 Directives 18/9/96, 5:16 pm85

86

AA90–1

ASSEMBLER DIRECTIVES REFERENCE

CLASS

The class of directives.

SUMMARY

The class is followed by a summary of the class, and a description of
each directive in the class.

SYNTAX

A full syntax definition of each directive.

PARAMETERS

Details of each parameter in the syntax definitions.

DESCRIPTION

A detailed description covering each directive’s most general use. This
includes information about what the directives are useful for, and a
discussion of any special conditions and common pitfalls.

EXAMPLES

Examples, illustrating typical applications of the directives and
clarifying any special cases.

SYNTAX CONVENTIONS In the syntax definitions the following conventions are used:

Parameters, representing what you would type, are shown in italics. So,
for example, in:

ORG expr

expr represents an arbitrary expression.

Optional parameters are shown in square brackets. So, for example, in:

END [expr]

the expr parameter is optional.

§10 Directives 18/9/96, 5:16 pm86

87

AA90–1

ASSEMBLER DIRECTIVES REFERENCE

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times. For example:

LOCAL symbol [,symbol] …

indicates that LOCAL can be followed by one or more symbols, separated
by commas.

Alternatives are enclosed in { and } brackets, separated by a vertical
bar. For example:

LSTOUT{+ | -}

indicates that the directive must be followed by either + or -.

LABELS AND COMMENTS

Where a directive must be preceded by a label, this is indicated in the
syntax, as in:

label VAR expr

All other directives can be preceded by an optional label, which will
assume the value and type of the current location counter (PLC), and
for clarity this is not included in each syntax definition.

In addition, unless explicitly specified, all directives can be followed by
a comment, preceded by ; (semi-colon).

PARAMETERS

The following table shows the correct form of the most commonly-used
types of parameter:

Parameter What it consists of

symbol An assembler symbol.

label A symbolic label.

expr An expression; see Expressions and operators, page 51.

§10 Directives 18/9/96, 5:16 pm87

88

AA90–1

MODULE CONTROL DIRECTIVES

Module control directives are used to mark the beginning and end of
source program modules, and to assign names and types to them.

Directive Description

NAME (PROGRAM) Begins a program module.

MODULE (LIBRARY) Begins a library module.

ENDMOD Terminates the assembly of the current
module.

END Terminates the assembly of the last
module in a file.

SYNTAX

NAME symbol [(expr)]

MODULE symbol [(expr)]

ENDMOD [label]

END [label]

PARAMETERS

symbol Name assigned to module, used by XLIB when
referencing the module.

expr Optional expression (0–255) used by the IAR C
Compiler.

label An expression or label which can be resolved at
assembly time. It is output in the object code as a
program entry address.

DESCRIPTION

Beginning a program module
Use NAME to begin a program module, and assign a name for future
reference by XLINK and XLIB.

Program modules are unconditionally linked by XLINK, even if they are
not referenced by other modules.

MODULE CONTROL
DIRECTIVES

§10 Directives 18/9/96, 5:16 pm88

89

AA90–1

MODULE CONTROL DIRECTIVES

Beginning a library module
Use MODULE to create libraries containing lots of small modules (like run
time systems for high level languages), where each module also often
represent a single routine. With the multi-module facility you can
significantly reduce the number of source and object files needed.

Library modules are only copied into the linked code if a public symbol
in the module is referenced by other modules.

Terminating a module
Use ENDMOD to define the end of a module.

Terminating the last module
Use END to indicate the end of the source file. Any lines after the END
directive are ignored.

Program entries must be either relocatable or absolute (no externals
allowed), and will show up in XLINK load maps, as well as in some of
the hexadecimal absolute output formats.

The following rules apply to multi-module assemblies:

◆ At the beginning of a new module all user symbols are deleted,
except for those created by DEFINE, #define, or MACRO, the location
counters are cleared, and the mode is set to absolute.

◆ List control directives remain in effect throughout the assembly.

Note that END must always be used in the last module, and that there
must not be any source lines (except for comments and list control
directives) between an ENDMOD and a MODULE directive.

If the NAME or MODULE directive is missing, the module will be assigned
the name of the source file and the attribute program.

EXAMPLES

The following example defines three modules:

MODULE
.
. Module #1
.
ENDMOD
MODULE
.
. Module #2

§10 Directives 18/9/96, 5:16 pm89

90

AA90–1

.
ENDMOD
MODULE
.
. Last module
.
END

These directives control how symbols are shared between modules.

Directive Description

PUBLIC (EXPORT) Exports symbols to other modules.

EXTERN (IMPORT) Imports an external symbol.

SYNTAX

PUBLIC symbol [,symbol] …

EXTERN symbol [,symbol] …

PARAMETERS

symbol Symbol to be imported or exported.

DESCRIPTION

Exporting symbols to other modules
Use PUBLIC to make one or more symbols available to other modules.
The symbols declared as PUBLIC can only be assigned values by using
them as labels. PUBLIC declared symbols can be relocated or absolute,
and can also be used in expressions (with the same rules as for other
symbols).

The PUBLIC directive always exports full 32-bit values, which makes it
feasible to use global 32-bit constants also in assemblers for 8 and 16-bit
processors. With the LOW, HIGH, BYTE2, and BYTE3 operators any part of
such a constant can be loaded in a 8 or 16-bit register or word.

There are no restrictions on the number of PUBLIC declared symbols in
a module.

SYMBOL CONTROL DIRECTIVES

SYMBOL CONTROL
DIRECTIVES

§10 Directives 18/9/96, 5:16 pm90

91

AA90–1

SEGMENT CONTROL DIRECTIVES

Importing symbols
Use EXTERN to import an untyped external symbol.

EXAMPLES

The following example defines a subroutine to print an error message,
and exports the entry address err so that it can be called from other
modules.

Since the message is enclosed in double quotes, the string will be
followed by a zero byte.

It defines print as an external routine; the address will be resolved at
link time.

 1 00000000 NAME error

 2 00000000 EXTERN print

 3 00000000 PUBLIC err

 4 00000000

 5 00000000 err CALL print

 6 00000004 2A2A2A2A2A45 DB "*****Error****"

 7 00000013 0895 RET

 8 00000015 END err

The segment directives control how code and data are generated.

Directive Description

ASEG Begins an absolute segment.

RSEG Begins a relocatable segment.

STACK Begins a stack segment.

COMMON Begins a common segment.

ORG Sets the location counter.

ALIGN Aligns the program counter by inserting
zero-filled bytes.

EVEN Aligns the program counter to an even
address.

SEGMENT CONTROL
DIRECTIVES

§10 Directives 18/9/96, 5:16 pm91

92

AA90–1

SEGMENT CONTROL DIRECTIVES

SYNTAX

ASEG [start [(align)]]

RSEG segment [:type] [(align)]

STACK segment [:type] [(align)]

COMMON segment [:type] [(align)]

ORG expr

ALIGN [align]

EVEN

PARAMETERS

start A start address which has the same effect as using an
ORG directive at the beginning of the absolute segment.

segment The name of the segment.

type The memory type; one of:

UNTYPED (the default), CODE, or DATA.

In addition, the following types are provided for
compatibility with the IAR C Compilers:

XDATA, IDATA, BIT, REGISTER, and CONST.

expr Address to set location counter to.

align Power of two to which the address should be aligned,
in the range 0 to 30.

DESCRIPTION

Beginning an absolute segment
Use ASEG to set the absolute mode of assembly, which is the default at
the beginning of a module.

If the parameter is omitted, the start address of the first segment is 0,
and subsequent segments continue after the last address of the previous
segment.

§10 Directives 18/9/96, 5:16 pm92

93

AA90–1

SEGMENT CONTROL DIRECTIVES

Beginning a relocatable segment
Use RSEG to set the current mode of the assembly to relocatable
assembly mode. The assembler maintains separate location counters
(initially set to zero) for all segments, which makes it possible to switch
segments and mode anytime without the need to save the current
segment location counter.

Up to 256 unique, relocatable segments may be defined in a single
module.

Beginning a stack segment
Use STACK to allocate code or data allocated from high to low addresses
(vs. the RSEG directive which causes low-to-high allocation).

Note that the contents of the segment are not generated in reverse
order.

Beginning a common segment
Use COMMON to place data in memory at the same location as COMMON
segments from other modules that have the same name. In other words,
all COMMON segments of the same name will start at the same location in
memory and overlay each other.

Obviously, the COMMON segment type should not be used for overlaid
executable code. A typical application would be where you desire to
have a number of different routines share a reusable, common area of
memory for data.

It can be practical to have the interrupt vector table in a COMMON
segment, thereby allowing access from several routines.

The final size of the COMMON segment is determined by the size of largest
occurrence of this segment. The location in memory is determined by
the XLINK -Z command; see Segment control, page 156.

Specifying the align parameter in any of the above directives is
equivalent to including an ALIGN directive with the same value.

Setting the location counter
Use ORG to set the location counter of the current segment to the value
of an expression. The optional label will assume the value and type of
the new location counter.

The result of the expression must be of the same type as the current
segment, that is, it is not valid to use ORG 10 during RSEG, since the
expression is absolute; instead use ORG $+10. The expression must not
contain any forward or external references.

§10 Directives 18/9/96, 5:16 pm93

94

AA90–1

SEGMENT CONTROL DIRECTIVES

All location counters are set to zero at the beginning of an assembly
module.

Aligning a segment
Use ALIGN to align the program counter to a specified address boundary.
The expression gives the power of two to which the program counter
should be aligned. The EVEN directive aligns the program counter to an
even address (which is equivalent to ALIGN 1).

EXAMPLES

Beginning an absolute segment
The following example assembles interrupt routine entry addresses in
the appropriate AT90S interrupt vectors using an absolute segment:

 EXTERN reset,IRQ0,IRQ1,TIM1CAPT

 ASEG
 ORG 0h
vec0 DW TIM1CAPT 0
vec1 DW TIM1CAPT 1
vec2 DW TIM1CAPT 2
vec3 DW TIM1CAPT .. etc

 ORG 15h
reset

 END

Beginning a relocatable segment
In the following example the data following the first RSEG directive is
placed in a relocatable segment called table; the ORG directive is used to
create a gap of six bytes in the table.

The code following the second RSEG directive is placed in a relocatable
segment called code:

 EXTERN divrtn,mulrtn

 RSEG table
 DW divrtn,mulrtn

 ORG $+6
 DW subrtn

§10 Directives 18/9/96, 5:16 pm94

95

AA90–1

SEGMENT CONTROL DIRECTIVES

 RSEG code
subrtn MOV R16,R17
 SUBI R16,20
 END

Beginning a stack segment
The following example defines two 100-byte stacks in a relocatable
segment called rpnstack:

 STACK rpnstack
parms DS 100
opers DS 100

 END

The data is allocated from high to low addresses.

Beginning a common segment
The following example defines two common segments containing
variables:

 NAME common1
 COMMON data
count DD 1
 ENDMOD

 NAME common2
 COMMON data
up DB 1
 ORG $+2
down DB 1
 END

Because the common segments have the same name, data, the variables
up and down refer to the same locations in memory as the first and last
bytes of the 4-byte variable count.

§10 Directives 18/9/96, 5:16 pm95

96

AA90–1

VALUE ASSIGNMENT DIRECTIVES

Aligning a segment
This example starts a relocatable segment, moves to an even address and
adds some data. It then aligns to a 64-byte boundary before creating a
64-byte table.

RSEG data ; Start a relocatable data
segment

EVEN ; Ensure it is on an even
boundary

target DW 1 ; target and best will be on an
even boundary

best DW 1
ALIGN 6 ; Now align to a 64 byte

boundary
results DS 64 ; And create a 64 byte table

END

These directives are used to assign values to symbols.

Directive Description

VAR (ASSIGN) Assigns a temporary value.

EQU (ALIAS,=) Assigns a permanent value local to a
module.

DEFINE Defines a file-wide value.

LIMIT Checks a value against limits.

sfrb Creates byte-access SFR labels.

sfrw Creates word-access SFR labels.

SFRTYPE Specifies SFR attributes.

SYNTAX

label VAR expr

label EQU expr

label = expr

label DEFINE expr

VALUE ASSIGNMENT
DIRECTIVES

§10 Directives 18/9/96, 5:16 pm96

97

AA90–1

VALUE ASSIGNMENT DIRECTIVES

LIMIT label,min,max,message

[const] sfrb register = value

[const] sfrw register = value

[const] SFRTYPE register attribute [,attribute] = value

PARAMETERS

label Symbol to be defined.

expr Value assigned to symbol.

register The special function register.

attribute One or more of the following:

READ You can read from this SFR.

WRITE You can write to this SFR.

BYTE The SFR must be accessed as a byte.

WORD The SFR must be accessed as a word.

value The SFR port address.

min, max The minimum and maximum values allowed for
label.

message A text message that will be printed when the symbol is
out of range.

DESCRIPTION

Defining a temporary value
Use VAR to define a symbol which may be redefined, such as for use
with macro variables. Symbols defined with VAR cannot be declared
PUBLIC.

Defining a permanent local value
Use EQU or = to assign a value to a symbol.

Use EQU to create a local symbol that denotes a number or offset.

The symbol is only valid in the module in which it was defined, but can
be made available to other modules with a PUBLIC directive.

To import symbols from other modules use EXTERN.

§10 Directives 18/9/96, 5:16 pm97

98

AA90–1

Defining a permanent global value
Use DEFINE to define symbols that should be known to all modules in
the source file.

A symbol which has been given a value with DEFINE can be made
available to modules in files with the PUBLIC directive.

Symbols defined with DEFINE cannot be redefined.

Defining special function registers
Use sfrb to create special function register labels with attributes READ,
WRITE, and BYTE turned on. Use sfrw to create special function register
labels with attributes READ, WRITE, or WORD turned on. Use SFRTYPE to
create special function register labels with specified attributes.

Prefix the directive with const to disable the WRITE attribute assigned
to the SFR. You will then get an error/warning when trying to write to
the SFR.

Checking symbol values
Use LIMIT to check that symbols lie within a specified range. If the
symbol is assigned a value outside the range an error message will be
printed.

min, max The minimum and maximum values allowed for
label.

message A text message that will be printed when the symbol is
out of range.

The check will occur as soon as the value is resolved, which will be
during linking if the expression contains external references. The min
and max expressions cannot involve references to forward or external
labels, ie they must be resolved when encountered.

EXAMPLES

Redefining a symbol
The following example uses SET to redefine the symbol cons in a REPT
loop to generate a table of the first 8 powers of 3:

NAME table
cons VAR 1
buildit MACRO times

DW cons

VALUE ASSIGNMENT DIRECTIVES

§10 Directives 18/9/96, 5:16 pm98

99

AA90–1

VALUE ASSIGNMENT DIRECTIVES

cons VAR cons * 3
IF times > 1
buildit times - 1
ENDIF
ENDM

main buildit 4
END

It generates the following code:

 1 00000000 NAME table

 2 00000001 cons VAR 1

 10 00000000 main buildit 4

 10 00000000 main buildit 4

 10.1 00000000 0100 DW cons

 10.2 00000003 cons VAR cons * 3

 10.3 00000002 IF 4 > 1

 10.4 00000002 buildit 4 - 1

 10.5 00000002 0300 DW cons

 10.6 00000009 cons VAR cons * 3

 10.7 00000004 IF 4 - 1 > 1

 10.8 00000004 buildit 4 - 1 - 1

 10.9 00000004 0900 DW cons

 10.10 0000001B cons VAR cons * 3

 10.11 00000006 IF 4 - 1 - 1 > 1

 10.12 00000006 buildit 4 - 1 - 1 - 1

 10.13 00000006 1B00 DW cons

 10.14 00000051 cons VAR cons * 3

 10.15 00000008 IF 4 - 1 - 1 - 1 > 1

 10.16 00000008 buildit 4 - 1 - 1 - 1 - 1

 10.17 00000008 ENDIF

 10.18 00000008 ENDM

 10.19 00000008 ENDIF

 10.20 00000008 ENDM

 10.21 00000008 ENDIF

 10.22 00000008 ENDM

 10.23 00000008 ENDIF

 10.24 00000008 ENDM

 11 00000008 END

§10 Directives 18/9/96, 5:16 pm99

100

AA90–1

Using local and global symbols
In the following example the symbol value defined in module add1 is
local to that module; a distinct symbol of the same name is defined in
module add2. The DEFINE symbol is used to declare locn for use
anywhere in the file:

NAME add1
locn DEFINE 020h
value EQU 77

CLR R27
LDI R26,locn
LD R16,X
LDI R17,value
ADD R16,R17
RET
ENDMOD

NAME add2
value EQU 88

CLR R27
LDI R26,locn
LD R16,X
LDI R17,value
ADD R16,R17
RET
END

The symbol locn defined in module add1 is also available to module
add2.

Using special function registers
In this example a number of sfr variables are declared with a variety of
access capabilities.

sfrb portd = 0x12 /* byte read/write
access */

sfrw ocr1 = 0x2A /* word read/write
access */

const sfrb pind = 0x10 /*byte read only access
*/

SFRTYPE portb write, byte = 0x18 /* byte write only
access */

VALUE ASSIGNMENT DIRECTIVES

§10 Directives 18/9/96, 5:16 pm100

101

AA90–1

Using the LIMIT directive
The following example sets the value of a variable called speed and
then checks it (at assembly time) to see if it is in the range 10 to 30.
This might be useful if speed was often changed at compile time, but
values outside a defined range would cause undesirable behaviour.

speed VAR 23
LIMIT speed,10,30,"fred out of range"

These directives provide logical control over the selective assembly of
source code.

Directive Description

IF Assembles instructions if a condition is true.

ELSE Assembles instructions if a condition is false.

ELSEIF Specifies a new condition in an IF…ENDIF block.

ENDIF Ends an IF block.

SYNTAX

IF condition

ELSE

ELSEIF condition

ENDIF

CONDITIONAL ASSEMBLY DIRECTIVES

CONDITIONAL
ASSEMBLY DIRECTIVES

§10 Directives 18/9/96, 5:16 pm101

102

AA90–1

PARAMETERS

condition One of the following:

An absolute expression The expression must not
contain forward or external
references, and any non-zero
value is considered as true.

string1=string2 The condition is true if
string1 and string2 have
the same length and
contents.

string1<>string2 The condition is true of
string1 and string2 have
different length or contents.

DESCRIPTION

Use the IF … ELSE … ENDIF directives to control the assembly process
at assembly time. If the condition following the IF directive is not true,
the subsequent instructions will not generate any code (ie it will not be
assembled or syntax checked) until an ELSE or ENDIF directive is found.

Use ELSEIF to introduce a new condition after an IF directive.

Conditional assembler directives may be used anywhere in an assembly,
but have their greatest use in conjunction with macro processing.

All assembler directives (except for END), and file inclusion, may be
disabled by the conditional directives. Each IFxx directive must be
terminated by an ENDIF directive. The ELSE directive is optional, and if
used, it must be inside a IF … ENDIF block.

IF … ENDIF and IF … ELSE … ENDIF blocks may be nested to any level.

EXAMPLES

The following macro subtracts a constant from the register ‘r’.

sub MACRO r,c
IF c=1
DEC r
ELSE
SUBI r,c

CONDITIONAL ASSEMBLY DIRECTIVES

§10 Directives 18/9/96, 5:16 pm102

103

AA90–1

ENDIF
ENDM

If the argument to the macro is 2 it generates an SUBI instruction to
save instruction cycles; otherwise it generates a DEC instruction.

It could be tested with the following program:

main LDI R16,17
sub R16,2
LDI R17,22
sub R17,1
RET

END

These directives allow user macros to be defined.

Directive Description

MACRO Defines a macro.

ENDM Ends a macro definition.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

REPT Assembles instructions a specified number of times.

REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes strings.

ENDR Ends a repeat structure.

SYNTAX

name MACRO [argument] …

ENDM

EXITM

LOCAL symbol [,symbol] …

REPT expr

MACRO PROCESSING DIRECTIVES

MACRO PROCESSING
DIRECTIVES

§10 Directives 18/9/96, 5:16 pm103

104

AA90–1

REPTC formal,actual

REPTI formal,actual [,actual] …

ENDR

PARAMETERS

name The name of the macro.

argument A symbolic argument name.

symbol Symbol to be local to the macro.

expr An expression.

formal Argument into which each character of actual
(REPTC) or each actual (REPTI) is substituted.

actual String to be substituted.

DESCRIPTION

A macro is a user-defined symbol that represents a block of one or more
assembler source lines. Once you have defined a macro you can use it in
your program just like an assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s
definition, and inserts the lines that the macro represents as if they
were included in the source file at that position.

Although macros effectively perform simple text substitution, you can
control what they substitute by supplying parameters to them.

Defining a macro
You define a macro with the statement:

macroname MACRO [arg] [arg] …

Here macroname is the name you are going to use for the macro, and
arg is an argument for values you want to pass to the macro when it is
expanded.

For example, you could define a macro ERROR as follows:

errmac MACRO text
 CALL abort
 DB text,0
 ENDM

MACRO PROCESSING DIRECTIVES

§10 Directives 18/9/96, 5:16 pm104

105

AA90–1

This uses a parameter text to set up an error message for a routine
abort. You would call the macro with a statement such as:

 errmac 'Disk not ready'

This will be expanded by the assembler to:

 CALL abort
 DB 'Disk not ready',0

If you omit a list of one or more arguments, the arguments you supply
when calling the macro are called \1 to \9 and \A to \Z.

The previous example could therefore be written as follows:

errmac MACRO
 CALL abort
 DB \1,0
 ENDM

Use the EXITM directive to generate a premature exit from a macro.

EXITM is not allowed inside REPT … ENDR, REPTC … ENDR, or REPTI …
ENDR.

Use LOCAL to create symbols local to a macro. The LOCAL directive must
be used before the symbol is used.

Each time a macro is expanded new instances of local symbols are
created by the LOCAL directive, so it is legal to use local symbols in
recursive macros.

It is illegal to redefine a macro.

Passing special characters
Macro arguments that include commas or white space can be forced to
be interpreted as one argument by using the matching quote characters
< and > in the macro call.

For example:

macld MACRO op
LDI op
ENDM

MACRO PROCESSING DIRECTIVES

§10 Directives 18/9/96, 5:16 pm105

106

AA90–1

It could be called using:

macld <R16, 1>
END

You can redefine the macro quote characters with the -M command line
option; see Macro quote chars (-M), page 36.

How macros are processed
There are three distinct phases in the macro process:

◆ Scanning and saving of macro definitions is performed by the
assembler. The text between MACRO and ENDM is saved but not
syntax checked. Include file references $file are recorded and will
be included during macro expansion.

◆ A macro call forces the assembler to invoke the macro processor
(expander) which switches (if not already in a macro) the
assembler input stream from a source file to the output from the
macro expander (which takes its input from the requested macro
definition).

The macro expander has no knowledge of assembler symbols since
it only deals with text substitutions at source level. Before a line
from the called macro definition is handed over to the assembler,
the expander scans the line for all occurrences of symbolic macro
arguments, and replaces them with their expansion arguments.

◆ The expanded line is then processed as any other assembler source
line. The input stream to the assembler will continue to be the
output from the macro processor, until all lines of the current macro
definition have been read.

Repeating statements
Use the REPT … ENDR structure to assemble the same block of
instructions a number of times. If expr evaluates to 0 nothing will be
generated.

Use REPTC to assemble a block of instructions once for each character in
a string. If the string contains a comma it should be enclosed in
quotation marks.

Use REPTI to assemble a block of instructions once for each string in a
series of strings. Strings containing commas should be enclosed in
quotation marks.

MACRO PROCESSING DIRECTIVES

§10 Directives 18/9/96, 5:16 pm106

107

AA90–1

EXAMPLES

This section gives examples of the different ways in which macros can
make assembler programming easier.

Coding in-line for efficiency
In time-critical code it is often desirable to code routines in-line to avoid
the overhead of a subroutine call and return. Macros provide a
convenient way of doing this.

For example, the following subroutine outputs bytes from a buffer to a
port:

NAME play

portb VAR 0x18
RSEG DATA

buffer DS 256

RSEG CODE
play LDI R27,HIGH(buffer)

LDI R26,LOW(buffer)
LDI R25,255

loop LD R0,X+
OUT portb,R0
DEC R25
BRNE loop
RET
END

The main program calls this routine as follows:

doplay CALL play

For efficiency we can recode this as the following macro:

NAME play

portb VAR 0x18
RSEG DATA

buffer DS 256

play MACRO
LOCAL loop
LDI R27,HIGH(buffer)

MACRO PROCESSING DIRECTIVES

§10 Directives 18/9/96, 5:16 pm107

108

AA90–1

LDI R26,LOW(buffer)
LDI R25,255

loop LD R0,X+
OUT portb,R0
DEC R25
BRNE loop
ENDM

RSEG CODE
play
END

Note the use of the LOCAL directive to make the label loop local to the
macro; otherwise an error will be generated if the macro is used twice,
as the loop label will already exist.

To use in-line code the main program is then simply altered to:

doplay play

Using REPTC and REPTI
The following example assembles a series of calls to a subroutine plot
to plot each character in a string:

NAME reptc

EXTERN plotc
banner REPTC chr,"Welcome"

LDI R16,'chr'
CALL plotc
ENDR

END

This produces the following code:

 1 00000000 NAME reptc

 2 00000000

 3 00000000 EXTERN plotc

 4 00000000 banner REPTC chr,"Welcome"

 5 00000000 LDI R16,'chr'

 6 00000000 CALL plotc

 7 00000000 ENDR

 7.1 00000000 07E5 LDI R16,'W'

 7.2 00000002 CALL plotc

MACRO PROCESSING DIRECTIVES

§10 Directives 18/9/96, 5:16 pm108

109

AA90–1

 7.3 00000006 05E6 LDI R16,'e'

 7.4 00000008 CALL plotc

 7.5 0000000C 0CE6 LDI R16,'l'

 7.6 0000000E CALL plotc

 7.7 00000012 03E6 LDI R16,'c'

 7.8 00000014 CALL plotc

 7.9 00000018 0FE6 LDI R16,'o'

 7.10 0000001A CALL plotc

 7.11 0000001E 0DE6 LDI R16,'m'

 7.12 00000020 CALL plotc

 7.13 00000024 05E6 LDI R16,'e'

 7.14 00000026 CALL plotc

 8 0000002A

 9 0000002A END

The following example uses REPTI to clear a number of memory
locations:

NAME repti

EXTERN base,count,init

banner REPTI adds,base,count,init
LDI R30,LOW(adds)
LDI R31,HIGH(adds)
LDI R16,0
STD Z+0,R16
ENDR

END

This produces the following code:

 1 00000000 NAME repti

 2 00000000

 3 00000000 EXTERN base,count,init

 4 00000000

 5 00000000 banner REPTI adds,base,count,init

 6 00000000 LDI R30,LOW(adds)

 7 00000000 LDI R31,HIGH(adds)

 8 00000000 LDI R16,0

 9 00000000 STD Z+0,R16

 10 00000000 ENDR

 10.1 00000000 LDI R30,LOW(base)

MACRO PROCESSING DIRECTIVES

§10 Directives 18/9/96, 5:16 pm109

110

AA90–1

LISTING CONTROL DIRECTIVES

 10.2 00000002 LDI R31,HIGH(base)

 10.3 00000004 00E0 LDI R16,0

 10.4 00000006 0083 STD Z+0,R16

 10.5 00000008 LDI R30,LOW(count)

 10.6 0000000A LDI R31,HIGH(count)

 10.7 0000000C 00E0 LDI R16,0

 10.8 0000000E 0083 STD Z+0,R16

 10.9 00000010 LDI R30,LOW(init)

 10.10 00000012 LDI R31,HIGH(init)

 10.11 00000014 00E0 LDI R16,0

 10.12 00000016 0083 STD Z+0,R16

 11 00000018

 12 00000018 END

These directives provide control over the assembler listing.

Directive Description

LSTCND Controls conditional assembly listing.

LSTCOD Controls multi-line code listing.

LSTEXP Controls the listing of macro generated lines.

LSTMAC Controls the listing of macro definitions.

LSTOUT Controls assembly listing output.

LSTPAG Controls the formatting of output into pages.

LSTREP Controls the listing of lines generated by repeat
directives.

LSTXRF Generates a cross reference table.

PAGSIZ Sets the number of lines per page.

COL Sets the number of columns per page.

PAGE Generates a new page.

The following directives are provided for backward compatibility only,
and are ignored:

LSTFOR, LSTWID, TITL, STITL, PTITL, and PSTITL.

LISTING CONTROL
DIRECTIVES

§10 Directives 18/9/96, 5:16 pm110

111

AA90–1

SYNTAX

LSTCND{+ | -}

LSTCOD{+ | -}

LSTEXP{+ | -}

LSTMAC{+ | -}

LSTOUT{+ | -}

LSTPAG{+ | -}

LSTREP{+ | -}

LSTXRF{+ | -}

COL columns

PAGSIZ lines

PAGE

PARAMETERS

columns An absolute expression in the range 80 to 132, default
132.

lines An absolute expression in the range 10 to 150.

DESCRIPTION

Turning the listing on or off
Use LSTOUT- to disable all list output except for error messages. This
overrides all other list control directives.

The default is LSTOUT+, which lists the output (if a list file was
specified).

Listing conditional code and strings
Use LSTCND+ to force the assembler to list source code only for the parts
of the assembly that are not disabled by previous conditional IF
statements, ELSE, or END.

The default setting is LSTCND-, which lists all source lines.

Use LSTCOD- to restrict the listing of output code to just the first line of
code for a source line.

LISTING CONTROL DIRECTIVES

§10 Directives 18/9/96, 5:16 pm111

112

AA90–1

The default setting is LSTCOD+, which lists more than one line of code
for a source line, if needed; ie long ASCII strings will produce several
lines of output. Code generation is not affected.

Controlling the listing of macros
Use LSTEXP- to disable the listing of macro generated lines. The default
is LSTEXP+, which lists all macro generated lines.

Use LSTMAC+ to list macro definitions. The default is LSTMAC-, which
disables the listing of macro definitions.

Controlling the listing of generated lines
Use LSTREP- to turn off the listing of lines generated by REPT, REPTC,
and REPTI directives.

The default is LSTREP+, which lists the generated lines.

Generating a cross reference table
Use LSTXRF+ to generate a cross reference table at the end of the
assembly list for the current module. The table shows values and line
numbers, and the type of the symbol.

The default is LSTXRF-, which does not give a cross reference table.

Formatting listed output
Use COL to set the number of columns per page of the assembly list. The
default number of columns is 132.

Use PAGSIZ to set the number of printed lines per page of the assembly
list. The default number of lines per page is 44.

Use LSTPAG+ to format the assembly output list into pages.

The default is LSTPAG-, which gives a continuous listing.

Use PAGE to generate a new page in the assembly listing if paging is
active.

EXAMPLES

Turning the listing on or off
To disable the listing of a debugged section of program:

 LSTOUT-
 ; Debugged section

 LSTOUT+
 ; Not yet debugged

LISTING CONTROL DIRECTIVES

§10 Directives 18/9/96, 5:16 pm112

113

AA90–1

Listing conditional code and strings
The following example shows how LSTCND+ hides a call to a subroutine
that is disabled by an IF directive:

NAME lstcndtst
EXTERN print

RSEG prom
debug VAR 0
begin IF debug

CALL print
ENDIF

LSTCND+
begin2 IF debug

CALL print
ENDIF
END

This will generate the following listing:

 1 00000000 NAME lstcndtst

 2 00000000 EXTERN print

 3 00000000

 4 00000000 RSEG prom

 5 00000000 debug VAR 0

 6 00000000 begin IF debug

 7 00000000 CALL print

 8 00000000 ENDIF

 9 00000000

 10 00000000 LSTCND+

 11 00000000 begin2 IF debug

 13 00000000 ENDIF

 14 00000000 END

The following example shows the effect of LSTCOD+ on the code
generated by a DB directive:

 1 00000000 NAME lstcodtst

 2 00000000 01000A006400 DW 1,10,100,100,10000

 3 0000000A

 4 0000000A LSTCOD+

 5 0000000A 01000A006400 DW 1,10,100,1000,10000

 E8031027

 6 00000014 END

LISTING CONTROL DIRECTIVES

§10 Directives 18/9/96, 5:16 pm113

114

AA90–1

Controlling the listing of macros
The following example shows the effect of LSTMAC and LSTEXP:

dec2 MACRO arg
DEC arg
DEC arg
ENDM

LSTMAC-

inc2 MACRO arg
INC arg
INC arg
ENDM

begin dec2 R16

LSTEXP-
inc2 R17
RET

END begin

This will produce the following output:

 5 00000000

 6 00000000 LSTMAC-

 7 00000000

 12 00000000

 13 00000000 begin dec2 R16

 13 00000000 begin dec2 R16

 13.1 00000000 0A95 DEC R16

 13.2 00000002 0A95 DEC R16

 13.3 00000004 ENDM

 14 00000004

 15 00000004 LSTEXP-

 16 00000004 inc2 R17

 17 00000008 0895 RET

 18 0000000A

 19 0000000A END begin

LISTING CONTROL DIRECTIVES

§10 Directives 18/9/96, 5:16 pm114

115

AA90–1

Formatting listed output
The following example formats the output into pages of 66 lines each
with 80 columns. The LSTPAG directive organizes the listing into pages,
starting each module on a new page. The PAGE directive inserts
additional page breaks.

 PAGSIZ 66 ; Page size
 COL 80
 LSTPAG+
 …
 ENDMOD
 MODULE
 …
 PAGE
 …

The following C-language preprocessor directives are available:

Directive Description

#define Assigns a value to a label.

#undef Undefines a label.

#if Assembles instructions if a condition is true.

#ifdef Assembles instructions if a symbol is defined.

#ifndef Assembles instructions if a symbol is undefined.

#elif Introduces a new condition in an #if…#endif block.

#else Assembles instructions if a condition is false.

#endif Ends a #if, #ifdef, or #ifndef block.

#include Includes a file.

#error Generates an error.

SYNTAX

#define label text

#undef label

#if condition

C-STYLE PREPROCESSOR DIRECTIVES

C-STYLE
PREPROCESSOR
DIRECTIVES

§10 Directives 18/9/96, 5:16 pm115

116

AA90–1

#ifdef label

#ifndef label

#elif condition

#else

#endif

#include {"filename" | <filename>}

#error "message"

PARAMETERS

label Symbol to be defined, undefined, or tested.

text Value to be assigned.

condition One of the following:

An absolute expression The expression must not
contain forward or external
references, and any non-zero
value is considered as true.

string1=string2 The condition is true if
string1 and string2 have
the same length and
contents.

string1<>string2 The condition is true if
string1 and string2 have
different length or contents.

filename Name of file to be included.

message Text to be displayed.

DESCRIPTION

Defining and undefining labels
Use #define to define a temporary label.

#define label value

C-STYLE PREPROCESSOR DIRECTIVES

§10 Directives 18/9/96, 5:16 pm116

117

AA90–1

is similar to:

label VAR value

Use #undef to undefine a label; the effect is as if it had not been
defined.

Conditional directives
Use the #if … #else … #endif directives to control the assembly
process at assembly time. If the condition following the #if directive is
not true, the subsequent instructions will not generate any code (ie it
will not be assembled or syntax checked) until a #endif or #else
directive is found.

All assembler directives (except for END), and file inclusion, may be
disabled by the conditional directives. Each #if directive must be
terminated by a #endif directive. The #else directive is optional, and if
used, it must be inside a #if … #endif block.

Use #elif to introduce a new condition after a #if directive.

#if … #elif … #else … #endif blocks may be nested to any level.

Use #ifdef to assemble instructions up to the next #else or #endif
directive only if a symbol is defined.

Use #ifndef to assemble instructions up to the next #else or #endif
directive only if a symbol is undefined.

Including source files
Use #include to insert the contents of a file into the source file at a
specified point.

Displaying errors
Use #error to force the assembler to generate an error, such as in a
user-defined test.

C-STYLE PREPROCESSOR DIRECTIVES

§10 Directives 18/9/96, 5:16 pm117

118

AA90–1

EXAMPLES

Using conditional directives
The following example defines the labels tweek and adjust. If adjust is
defined then register 16 is decremented by an amount that depends on
adjust, in this case 30.

#define tweek 1
#define adjust 3

#ifdef tweek
#if adjust=1

SUBI R16,4
#elif adjust=2

SUBI R16,20
#elif adjust=3

SUBI R16,30
#endif
#endif /* ifdef tweek*/

Including a source file
The following example uses #include to include a file defining macros
into the source file. For example, the following macros could be defined
in macros.s90:

xch MACRO a,b
PUSH a
MOV a,b
POP b
ENDM

The macro definitions can then be included, using #include, as in the
following example.

NAME include

;Standard macro definitions
#include "macros.s90"

; Program
main xch R16,R17

RET
END main

C-STYLE PREPROCESSOR DIRECTIVES

§10 Directives 18/9/96, 5:16 pm118

119

AA90–1

These directives define temporary values or reserve memory.

Directive Description

DS Allocates space for 8-bit bytes.

DB Generates 8-bit byte constants.

DW Generates 16-bit word constants.

DP Generates 24-bit double word constants.

DD Generates 32-bit double word constants.

SYNTAX

DS expr

DB expr[,expr]

DW expr[,expr]

DP expr[,expr]

DD expr[,expr]

PARAMETERS

expr A valid absolute, relocatable, or external expression, or
an ASCII string. ASCII strings will be zero filled to a
multiple of the size. Double-quoted strings will be zero-
terminated.

DESCRIPTION

Use DS to allocate space. The memory contents are not initialized in any
way.

Use DB, DW, DP, and DD to initialize and reserve memory space.

EXAMPLES

The following example generates a lookup table of addresses to routines:

NAME table

table DW addsubr,subsubr,clrsubr

DATA DEFINITION OR ALLOCATION DIRECTIVES

DATA DEFINITION OR
ALLOCATION
DIRECTIVES

§10 Directives 18/9/96, 5:16 pm119

120

AA90–1

addsubr ADD R16,R17
RET

subsubr SUB R16,R17
RET

clrsubr CLR R16
RET

END

Defining strings
To define a string:

mymess DB 'Please enter your name'

To define a string which includes a trailing zero:

myCstr DB "This is a string."

To include a single quote in a string, enter it twice; for example:

errmess DB 'Don''t understand!'

Reserving space
To reserve space for 0xA bytes:

table DS 0xA

These directives provide control over the operation of the assembler.

Directive Description

$ Includes a file.

/*comment*/ C-style comment delimiter.

RADIX Sets the default base.

CASEON Enables case sensitivity.

CASEOFF Disables case sensitivity.

// C++ style comment delimiter.

ASSEMBLER CONTROL DIRECTIVES

ASSEMBLER CONTROL
DIRECTIVES

§10 Directives 18/9/96, 5:16 pm120

121

AA90–1

SYNTAX

$filename

/*comment*/

RADIX expr

CASEON

CASEOFF

//

PARAMETERS

filename Name of file to be included. The $ character must be
the first character on the line.

comment Comment ignored by the assembler.

expr Default base; default 10 (decimal).

DESCRIPTION

Use $ to insert the contents of a file into the source file at a specified
point.

Use /* … */ to comment sections of the assembler listing.

Use RADIX to set the default base for use in conversion of constants
from ASCII source to the internal binary format.

To reset the base from 16 to 10 expr must be written in hexadecimal.
For example:

RADIX 0x0A

Controlling case sensitivity
Use CASEON or CASEOFF to turn on or off case sensitivity for user-
defined symbols. By default case sensitivity is off.

When CASEOFF is active all symbols are stored in upper case, and all
symbols used by XLINK should be written in upper case in the XLINK
definition file.

ASSEMBLER CONTROL DIRECTIVES

§10 Directives 18/9/96, 5:16 pm121

122

AA90–1

EXAMPLES

Including a source file
The following example uses $ to include a file defining macros into the
source file. For example, the following macros could be defined in
macros.s90:

xch MACRO a,b
PUSH a
MOV a,b
POP b
ENDM

The macro definitions can be included with a $ directive, as in:

NAME include

;Standard macro definitions
$macros.s90

; Program
main xch R16,R17

RET
END main

Defining comments
The following example shows how /* … */ can be used for a multi-
line comment:

/*
Program to read serial input.
Version 2: 19.6.94
Author: mjp
*/

Changing the base
To set the default base to 16:

 RADIX D'16
 LD A,12

The immediate argument will then be interpreted as H'12.

ASSEMBLER CONTROL DIRECTIVES

§10 Directives 18/9/96, 5:16 pm122

123

AA90–1

ASSEMBLER CONTROL DIRECTIVES

Controlling case sensitivity
By default CASEOFF is active, so in the following example label and
LABEL are identical:

label NOP ;stored as "LABEL"
JMP LABEL

However, the following will generate a duplicate label error:

label NOP
LABEL NOP ;Error: "LABEL" already defined

END

§10 Directives 18/9/96, 5:16 pm123

124

AA90–1

ASSEMBLER CONTROL DIRECTIVES

§10 Directives 18/9/96, 5:16 pm124

125

AA90–1

ASSEMBLER
INSTRUCTIONS
This chapter lists the mnemonics of the AT90S processor.

The following symbols are used in the list of instruction mnemonics:

Symbol What it means

b A bit in a register in the range 0 to 7.

s A bit in the status register in the range 0 to 255.

k Any address.

k64 Any constant in the range -64 to +63.

k255 Any constant in the range 0 to 255.

k4096 Any constant in the range -4094 to +4096.

k64K Any constant in the range 0 to 65535.

k4M Any constant in the range 0 to 4194303.

p A port number in the range 0 to 63.

p32 A port number in the range 0 to 31.

q An offset in the range 0 to 63.

r16 Any of R16 to R31.

r32 Any of R0 to R31.

rdl R24, R26, R28, or R30.

X R27:R26.

Y R29:R28.

Z R31:R30.

CPU INSTRUCTION
MNEMONICS

§11 Instructions 18/9/96, 5:17 pm125

ASSEMBLER INSTRUCTIONS

126

AA90–1

ARITHMETIC AND LOGIC INSTRUCTIONS

First argument Second argument

ADD, ADC, SUB, SBC r32 r32
AND, OR, EOR, MUL1

1 MUL is not available with all processors, but it is accepted by the
assembler regardless of the processor option.

SUBI, SBCI, ANDI r16 k255
ORI, SBR, CBR

COM, NEG, INC r32
DEC, TST, CLR

SER r16

ADIW, SBIW rdl k64

BRANCH INSTRUCTIONS

First argument Second argument

JMP k4M

CALL k

RJMP, RCALL k4096

BRCC, BRCS, BREQ k64
BRGE, BRSH, BRID
BRIE, BRLO, BRLT
BRMI, BRNE, BRHC
BRHS, BRPL, BRTC
BRTS, BRVC, BRVS

CPI r16 k255

BRBC, BRBS s k64

CPSE, CP, CPC r32 r32

SBRC, SBRS r32 b

§11 Instructions 18/9/96, 5:17 pm126

ASSEMBLER INSTRUCTIONS

127

AA90–1

First argument Second argument

SBIC, SBIS p32 b

IJMP, ICALL, RET, RETI –

DATA TRANSFER INSTRUCTIONS

First argument Second argument

MOV r32 r32

LDI r32 k255

LD r32 X
r32 X+
r32 -X
r32 Y
r32 Y+
r32 -Y
r32 Z
r32 Z+
r32 -Z

LDD r32 Y+q
r32 Z+q

LDS2 r32 k64K

2 Not available with processor options -v0 or -v2.

ST X r32
X+ r32
-X r32
Y r32
Y+ r32
-Y r32
Z r32
Z+ r32
-Z r32

STD Y+q r32
z+q r32

§11 Instructions 18/9/96, 5:17 pm127

ASSEMBLER INSTRUCTIONS

128

AA90–1

First argument Second argument

STS3 r32 k64K

3 Not available with processor options -v0 or -v2.

LPM None

IN, OUT r32 p

PUSH, POP r32

CBI, SBI p32 b

BIT AND BIT-TEST INSTRUCTIONS

First argument Second argument

LSL, LSR, ROL r32
ROR, ASR, SWAP

BST, BLD r32 b

CLC, CLIM, CLN None
CLH, CLS, CLT
CLV, CLZ, SEC
SEI, SEN, SEH
SES, SET, SEV, SEZ

BSET, BCLR s

MISCELLANEOUS

First argument Second argument

NOP, SLEEP, WDR None

§11 Instructions 18/9/96, 5:17 pm128

129

AA90–1

XLINK LINKER
This chapter describes the IAR Systems XLINK Linker, and gives
examples of how it can be used.

Note that some of the options described in the following chapters may
not be available for all assemblers.

INTRODUCTION The XLINK Linker is a powerful, flexible software tool for use in the
development of embedded-controller applications. XLINK reads one or
more relocatable object files produced by the IAR Systems Assembler or
C Compiler and produces absolute, machine-code programs as output.

It is equally well-suited for linking small, single-file, absolute assembler
programs as it is for linking large, relocatable, multi-module, C or mixed
C and assembler programs.

The following diagram illustrates the linking process:

XLINK Linker

ICC
ANSI C Cross Compiler

IAR Relocating Macro
Assembler

XLIB Librarian

C source
program

Assembler source
program

Absolute
object file

Relocatable
object files

OBJECT FORMAT

The object files produced by the IAR Systems Assembler and
C Compiler use a proprietary format called UBROF, which stands for
Universal Binary Relocatable Object Format. An application can be
made up of any number of UBROF relocatable files, in any combination
of assembler and C.

§12 XLINK linker 18/9/96, 5:17 pm129

XLINK LINKER

130

AA90–1

XLINK FUNCTIONS

XLINK performs three distinct functions when you link a program:

◆ It loads modules containing executable code or data from the input
file(s).

◆ It locates each segment of code or data at a user-specified address.

◆ It links the various modules together by resolving all global (ie non-
local, program-wide) symbols that could not be resolved by the
assembler or compiler.

◆ It loads modules needed by the program from user-defined libraries.

LIBRARIES

When XLINK reads a library file (which can contain multiple C or
assembler modules) it will only load those modules which are actually
needed by the program you are linking. This avoids having to load all
the modules in a library file when you only need one routine. The XLIB
Librarian is used to manage these library files.

OUTPUT FORMAT

The final output produced by XLINK is an absolute, executable
object file that can be put into an EPROM, downloaded to a hardware
emulator, or executed on the PC using the IAR Systems C-SPY
debugger.

§12 XLINK linker 18/9/96, 5:17 pm130

XLINK LINKER

131

AA90–1

The following diagram shows how XLINK processes input files and load
modules for a typical assembler or C program:

XLINK
Universal Linker

Absolute
object file

module_a
(PROGRAM)

module_b
(PROGRAM)

module_c
(PROGRAM)

module_d
(LIBRARY)

module_e
(LIBRARY)

module_f
(LIBRARY)

module_a.rxx

Object files: Modules:

module_b.rxx

library.rxx

The main program has been assembled from two source files,
module_a.sxx and module_b.sxx, to produce two relocatable files.
Each of these files consists of a single module module_a and module_b.
By default, the assembler assigns the PROGRAM attribute to both
module_a and module_b. This means that they will always be loaded
and linked whenever the files they are contained in are processed by
XLINK; ie the filenames are given as arguments.

The code and data from a single C source file ends up as a single module
in the file produced by the compiler. In other words, there is a one to
one relationship between C source files and C modules. By default, the
compiler gives this module the same name as the original C source file.
Libraries of multiple C modules can only be created using XLIB.

Assembler programs can be constructed so that a single source file
contains multiple modules, each of which can be a program module or a
library module.

INPUT FILES AND
MODULES

§12 XLINK linker 18/9/96, 5:17 pm131

XLINK LINKER

132

AA90–1

LIBRARIES

In the previous diagram, the file library.rxx consists of multiple
modules, each of which could have been produced by the assembler or
the C compiler.

The module module_c, which has the PROGRAM attribute will always be
loaded whenever the library.rxx file is listed among the input files
for the linker. In the run-time libraries, the startup module cstartup
(which is a required module in all C programs) has the PROGRAM
attribute so that it will always get included when you link a C project.

The other modules in the library.rxx file have the LIBRARY attribute.
Library modules are only loaded if they contain an entry (a function,
variable, or other symbol declared as PUBLIC) that is referenced in some
way by another module that is loaded. This way, XLINK only gets the
modules from the library file that it needs to build the program, and no
more. For example, if the entries in module_e are not referenced by any
loaded module, module_e will not be loaded.

This works as follows:

If module_a makes a reference to an external symbol, XLINK will
search the other input files for a module containing that symbol as a
PUBLIC entry; ie a module where the entry itself is located. If it finds
the symbol declared as PUBLIC in module_c, it will then load that
module (if it has not already been loaded). This procedure is iterative, so
if module_c makes a reference to an external the same thing happens.

It is important to understand that a library file is just like any other
relocatable object file. There is really no distinct type of file called a
library (modules have a LIBRARY or PROGRAM attribute). What makes a
file a library is what it contains and how it is used. Put simply, a library
is a .rxx file that contains a group of related, often-used modules, most
of which have a LIBRARY attribute so that they can be loaded on a
demand-only basis.

§12 XLINK linker 18/9/96, 5:17 pm132

XLINK LINKER

133

AA90–1

CREATING LIBRARIES

You can create your own libraries, or add to existing libraries, using C or
assembler modules. The C compiler -b option can be used to force a C
module to have a LIBRARY attribute instead of the default PROGRAM
attribute. In assembler programs, the MODULE directive is used to give a
module the LIBRARY attribute, and the NAME directive is used to give a
module the PROGRAM attribute.

The XLIB Librarian is used to create and manage libraries. Among
other tasks, it can be used to alter the attribute (PROGRAM/LIBRARY) of
any other module after it has been compiled or assembled.

SEGMENT LOCATION

Once XLINK has identified the modules to be loaded for a program, one
of its most important functions is to assign load addresses to the various
code and data segments that are being used by the program.

In assembly language programs the programmer is responsible for
declaring and naming relocatable segments and determining how they
are used. In C programs the compiler creates and uses a set of pre-
defined code and data segments, and you have only limited control over
segment naming and usage.

§12 XLINK linker 18/9/96, 5:17 pm133

XLINK LINKER

134

AA90–1

##
#
IAR Universal Linker Vx.xx
#
Target CPU = xxxxx
List file = c:\iar\ew\program\release\list\aout.map
Output file 1 = c:\iar\ew\program\release\exe\aout.hex
Output format = debug
Command line = -o C:\IAR\EW\PROGRAM\Release\exe\aout.hex
-rt -f C:\IAR\EW\PROGRAM\ICCxxx\Lnk_kbs.xcl
-l C:\IAR\EW\PROGRAM\Release\list\aout.map
-x -Ic:\Program Files\iar\ew\program\iccxxx\
C:\IAR\EW\PROGRAM\Release\obj\tutor1.rxx
#
(c) Copyright IAR Systems 1996
##

 **
 * *
 * CROSS REFERENCE *
 * *
 **

 Program entry at : 00002080 Relocatable, from module : CSTARTUP

 **
 * *
 * MODULE MAP *
 * *
 **

 DEFINED ABSOLUTE ENTRIES
 PROGRAM MODULE, NAME : ?ABS_ENTRY_MOD
 ABSOLUTE ENTRIES ADDRESS REF BY MODULE
 ============== ======= =============
 SET_CCB3 0000FFFF CSTARTUP
 SET_CCB2 0000FFFF CSTARTUP
 SET_CCB1 000027FE CSTARTUP
 SET_CCB0 000020FF CSTARTUP

 FILE NAME : c:\program files\iar\ew\program\release\obj\tutor1.rxx
 PROGRAM MODULE, NAME : tutor1

 SEGMENTS IN THE MODULE
 ======================
CODE
 Relative segment, address : 0000210C - 00002141
 ENTRIES ADDRESS REF BY MODULE
 do_foreground_process 0000210C Not referred to
 calls direct
 main 00002120 CSTARTUP
 calls direct
 LOCALS ADDRESS
 ?0001 00002133
 ?0000 0000213F

CONST
 Relative segment, address : 00002146 - 00002146
 ENTRIES ADDRESS REF BY MODULE
 con_char 00002146 Not referred to

WRKSEG
 Common segment, address : 00000024 - 00000043

 **
 * *
 * SEGMENTS IN DUMP ORDER *
 * *
 **

 SEGMENT START ADDRESS END ADDRESS TYPE ORG P/N ALIGN
 ======= ============= =========== ==== === === =====
GLOBREG 0000001C - 00000023 rel stc pos 2
WRKSEG 00000024 - 00000043 com flt pos 2
IDATA0 Not in use rel flt pos 1

LISTING FORMAT The default XLINK listing format is shown below:

Header

Segment list

Module map

Cross reference

§12 XLINK linker 18/9/96, 5:17 pm134

XLINK LINKER

135

AA90–1

It consists of the following sections:

HEADER

Shows the command line, and options selected for the XLINK
command:

##
#
IAR Universal Linker Vx.xx
#
Target CPU = xxxxx
List file = ncr.map
Output file 1 = aout.dxx
Output format = debug
Command line = -cxxxxx -rt -x -l ncr.map ncr
#
(c) Copyright IAR Systems 1996
##

The full list of options shows the options specified on the command
line. Options in command files specified with the -f option are also
shown, in brackets.

CROSS REFERENCE

The cross reference consists of the entry list, module map and/or the
segment map. It includes the program entry point, used in some output
formats for hardware emulator support; see the assembler END directive
in Module control directives, page 88.

Segment list (-xs)
The segment list gives the segments in the order in which they were
linked:

 SEGMENT START ADDRESS END ADDRESS TYPE ORG P/N ALIGN
 ======= � ============= =========== ==== === === =====
GLOBREG 0000001C - 00000023 rel stc pos 2
WRKSEG 00000024 - 00000043 com flt pos 2
IDATA0 Not in use rel flt pos 1

Target CPU type

Output file or device name for the listing

Absolute output filename

Output file format

Full list of options

List of segments

Segment name Segment load
address range

Segment
alignment

Segment
type

Allocation
direction

Origin

§12 XLINK linker 18/9/96, 5:17 pm135

XLINK LINKER

136

AA90–1

This lists the start and end address for each segment, and the following
parameters:

Parameter Description

TYPE The type of segment:

rel Relative.

stc Stack.

bnk Banked.

com Common.

dse Defined but not used.

ORG The origin; the type of segment start address:

stc Absolute, for ASEG segments.

flt Floating, for RSEG, COMMON, or STACK segments.

P/N Positive/Negative; how the segment is allocated:

pos Upwards, for ASEG, RSEG, or COMMON segments.

neg Downwards, for STACK segments.

ALIGN The segment is aligned to the next 2^ALIGN address
boundary.

§12 XLINK linker 18/9/96, 5:17 pm136

XLINK LINKER

137

AA90–1

 FILE NAME : c:\program files\iar\ew\program\release\obj\tutor1.rxx
 PROGRAM MODULE, NAME : tutor1

 SEGMENTS IN THE MODULE
 ======================
CODE
 Relative segment, address : 0000210C - 00002141
 ENTRIES ADDRESS REF BY MODULE
 do_foreground_process 0000210C Not referred to
 calls direct
 main 00002120 CSTARTUP
 calls direct
 LOCALS ADDRESS
 ?0001 00002133
 ?0000 0000213F
 --
CONST
 Relative segment, address : 00002146 - 00002146
 ENTRIES ADDRESS REF BY MODULE
 con_char 00002146 Not referred to
 --
WRKSEG
 Common segment, address : 00000024 - 00000043

Input file containing the module

List of segments

Segment name

List of local symbols

List of public symbols

Module type (PROGRAM/LIBRARY) and name

Segment name

 DEFINED ABSOLUTE ENTRIES
 PROGRAM MODULE, NAME : ?ABS_ENTRY_MOD
 ABSOLUTE ENTRIES ADDRESS REF BY MODULE
 ============== ======= =============
 SET_CCB3 0000FFFF CSTARTUP
 SET_CCB2 0000FFFF CSTARTUP
 SET_CCB1 000027FE CSTARTUP
 SET_CCB0 000020FF CSTARTUP

Module name

List of symbols

Symbol Value

Module listing (-xm)
The module map consists of a subsection for each module that was
loaded as part of the program. Each subsection shows the following
information:

For each segment the module map also lists locals and entries.

Symbol listing (-xe)
Shows the entry name and address for each module and filename.

§12 XLINK linker 18/9/96, 5:17 pm137

XLINK LINKER

138

AA90–1§12 XLINK linker 18/9/96, 5:17 pm138

139

AA90–1

XLINK OPTIONS SUMMARY
XLINK options allow you to control the operation of XLINK from the
command line.

The options are divided into the following sections, corresponding to
the pages in the XLINK options in the Embedded Workbench version:

Output List
#define Include
Error

The Command line and Segment control sections provide information
about additional options which are only available in the command line
version, or in an XCL command file.

For full reference about each option refer to the following chapter,
XLINK options reference.

Setting XLINK options in the Embedded Workbench
To set XLINK options in the Embedded Workbench choose Options…
from the Project menu, and select XLINK in the Category list to
display the XLINK options pages:

SETTING XLINK
OPTIONS

§13 XLINK summary 18/9/96, 5:18 pm139

XLINK OPTIONS SUMMARY

140

AA90–1

XLINK OPTIONS SUMMARY

Then click the tab corresponding to the category of options you want to
view or change.

Setting XLINK options from the command line
To set options from the command line, either:

◆ Specify the options on the command line, after the xlink
command.

◆ Specify the options in an XCL command file, and include this on the
command line with -f file command.

◆ Specify the options in the XLINK_ENVPAR environment variable; see
the AT90S Command Line Interface Guide.

SUMMARY OF OPTIONS The following is a summary of all the XLINK options. For a full
description of any option, see under the option’s category name in the
next chapter, XLINK options reference.

Option Description Section

-! Comment delimeter. Command line

-A file,… Load as PROGRAM. Input

-B Always generate output. Error

-bbank_def Define banked segments. Segment control

-C file, … Conditionally load input files. Command line

-ccpu Processor type. Command line

-Dsymbol=value Define symbol. #define

-d Disable code generation. Command line

-E file,… Inherent, no object code. Input

-enew=old[,old] … Rename external symbols. Command line

-Fformat Output format. Output

-f file XCL filename. Include

-G No global type checking. Error

-Ipathname Include paths. Include

§13 XLINK summary 18/9/96, 5:18 pm140

XLINK OPTIONS SUMMARY

141

AA90–1

Option Description Section

-lfile Generate linker listing. List

-m Use less host memory. Command line

-n Ignore local symbols. Command line

-o file Output file. Output

-plines Lines/page. List

-R Disable range check. Error

-r Debug info. Output

-rt Debug info with terminal I/O. Output

-S Silent operation. Command line

-t Temporary file. Command line

-w Disable warnings. Error

-x[sem] Cross reference. List

-Y[char] Format variant. Output

-Zseg_def Define segments. Segment control

-z Segment overlap warnings. Error

§13 XLINK summary 18/9/96, 5:18 pm141

XLINK OPTIONS SUMMARY

142

AA90–1§13 XLINK summary 18/9/96, 5:18 pm142

143

AA90–1

XLINK OPTIONS
REFERENCE
This section gives details of the XLINK options classified according to
their function.

OUTPUT The output options are used to specify the output format and the level
of debugging information.

Embedded Workbench

Command line

-o file Output file.

-r Debug info.

-rt Debug info with terminal I/O.

-Fformat Output format.

-Y[char] Format variant.

§14 XLINK ref 18/9/96, 5:18 pm143

144

AA90–1

OUTPUT FILE (-o)

Syntax: -o file

Use Output file (-o) to specify the name of the XLINK output file. If a
name is not specified the linker will use the name aout.hex. If a name
is supplied without a file type, the default file type for the selected
output format (Output format (-F) option) will be used.

If a format is selected that generates two output files, the user-specified
file type (.a90) will only affect the primary output file (first format).

DEBUG INFO (-r)

Syntax: -r

Use Debug info (-r) to output a file in DEBUG (AUBROF) format,
with a .d90 extension, to be used with the C-SPY debugger, or
emulators which support the IAR Systems DEBUG format.

Specifying Debug info (-r) overrides any Output format (-F) option.

DEBUG INFO WITH TERMINAL I/O (-rt)

Syntax: -rt

Use Debug info with terminal I/O (-rt) to use the output file with
the C-SPY debugger and emulate terminal I/O.

OUTPUT FORMAT (-F)

Syntax: -Fformat

Use Output format (-F) to select the output format.

The environment variable XLINK_FORMAT can be set to install an
alternate default format on your system; see XLINK_FORMAT in the
AT90S Command Line Interface Guide.

The parameter should be one of the supported XLINK output formats;
for details of the formats see the chapter XLINK output formats.

If not specified, the default INTEL-EXTENDED format will be used.

Note that specifying the Output format (-F) option as DEBUG does not
include C-SPY debug support. Use the Debug info (-r) option instead.

OUTPUT

§14 XLINK ref 18/9/96, 5:18 pm144

145

AA90–1

FORMAT VARIANT (-Y)

Syntax: -Y[char]

Use Format variant (-Y) to select enhancements available for some
output formats. For more information see the chapter XLINK output
formats.

#define The #define option allows you to define symbols.

Embedded Workbench

Command line
-Dsymbol=value Define symbol.

DEFINE SYMBOL (-D)

Syntax: -Dsymbol=value

where symbol is any external (EXTERN) symbol in the program that is
not defined elsewhere, and value the value to be assigned to symbol.

Use Define symbol (-D) to define absolute symbols at link time. This is
especially useful for configuration purposes. Any number of symbols
can be defined using the XCL file mode of XLINK operation. The
symbol(s) defined in this manner will belong to a special module
generated by the linker called ?ABS_ENTRY_MOD.

XLINK will display an error message if you attempt to redefine an
existing symbol.

#define

§14 XLINK ref 18/9/96, 5:18 pm145

146

AA90–1

ERROR The Error options determine the error and warning messages
generated by the XLINK Linker.

Embedded Workbench

Command line
-B Always generate output.

-R Disable range check.

-w Disable warnings.

-z Segment overlap warnings.

-G No global type checking.

ALWAYS GENERATE OUTPUT (-B)

Syntax: -B

Use Always generate output (-B) to generate an output file even if a
non-fatal error was encountered during the linking process, such as a
missing global entry or a duplicate declaration. Normally, XLINK will
not generate an output file if an error is encountered. Note that XLINK
always aborts on fatal errors, even with -B.

The Always generate output (-B) option allows missing entries to be
patched in later in the absolute output image.

ERROR

§14 XLINK ref 18/9/96, 5:18 pm146

147

AA90–1

DISABLE RANGE CHECK (-R)

Syntax: -R

Use Disable range check (-R) to disable the address range check.

If an address is relocated out of the target CPU’s address range (code,
external data, or internal data address) an error message is generated.
This usually indicates an error in an assembly language module or in
the XLINK segment definition list (-Z command).

DISABLE WARNINGS (-w)

Syntax: -w

Use Disable warnings (-w) to suppress all warning messages. They
will, however, still be counted and shown in the linker’s final statistics.

SEGMENT OVERLAP WARNINGS (-z)

Syntax: -z

Use Segment overlap warnings (-z) to reduce segment overlap errors
to warnings, making it possible to produce cross-reference maps, etc.

NO GLOBAL TYPE CHECKING (-G)

Syntax: -G

Use No global type checking (-G) to disable type checking at link
time. While a well-written program should not need this option, there
may be occasions where it is helpful.

By default, XLINK performs link-time type checking between modules
by comparing the external references to an entry with the PUBLIC entry
(if the information exists in the object modules involved). A warning is
printed if there are mismatches; otherwise the linker will continue and
not abort.

ERROR

§14 XLINK ref 18/9/96, 5:18 pm147

148

AA90–1

LIST The List options determine the generation of an XLINK cross-reference
listing.

Embedded Workbench

Command line
-lfile Generate linker listing.

-x[sem] Cross reference.

-plines Lines/page.

GENERATE LINKER LISTING (-l)

Syntax: -lfile

Use Generate linker listing (-l) to generate a linker listing.

The name of the file or device to which a listing is directed. If an
extension is not specified, .lst is used by default. However, an
extension of .map is recommended to avoid confusing linker list files
with assembler or compiler list files.

LIST

§14 XLINK ref 18/9/96, 5:19 pm148

149

AA90–1

CROSS REFERENCE (-x)

Syntax: -x[sem]

Use Cross reference (-x) to include a segment map in the XLINK
listing file.

 The following options are available:

Option Command line Description

Segment map s A list of all the segments in
dump order.

Symbol listing e An abbreviated list of every
entry (global symbol) in every
module. This entry map is
useful for quickly finding the
address of a routine or data
element.

Module map m A list of all segments, local
symbols, and entries (public
symbols) for every module in
the program.

When the -x option is specified without any of the optional parameters,
a default cross-reference listing will be generated which is equivalent to
-xms. This includes:

◆ A header section with basic program information.

◆ A module load map with symbol cross-reference.

◆ A segment load map in dump order.

LINES/PAGE (-p)

Syntax: -plines

Sets the number of lines per page for the XLINK listings to lines,
which must be in the range 10 to 150.

The environment variable XLINK_PAGE can be set to install a default
page length on your system; see XLINK_PAGE in the AT90S Command
Line Interface Guide.

LIST

§14 XLINK ref 18/9/96, 5:19 pm149

150

AA90–1

INCLUDE The Include option allows you to set the include path for linker
command files, and specify the linker command file.

Embedded Workbench

Command line
-Ipathname Include paths.

-f file XCL filename.

INCLUDE PATHS (-I)

Syntax: -Ipathname

Specifies the pathname to be searched for linker command files.

By default, XLINK searches for linker command files only in the
current working directory. The Include paths (-I) option allows you
to specify the names of the directories which it will also search if it fails
to find the file in the current working directory.

This is equivalent to the XLINK_DFLTDIR command line option; see the
AT90S Command Line Interface Guide.

XCL FILENAME (-f)

Syntax: -f file

Use -f to extend the XLINK command line by reading arguments from
a command file, just as if they were typed in on the command line. If
not specified an extension of .xcl is assumed.

INCLUDE

§14 XLINK ref 18/9/96, 5:19 pm150

151

AA90–1

Arguments are entered into the XCL file with a text editor using the
same syntax as on the command line. However, in addition to spaces
and tabs, the end-of-line CR is also treated as a valid delimiter between
arguments. A command line may be extended by the \R sequence.

A default XCL file is selected automatically for the General Target
memory model and processor configuration selected. You can override
this by selecting Override default, and then specifying an alternative
file.

INPUT The Input options define the status of input modules.

Embedded Workbench

Command line
file,… Inherent.

-E file,… Inherent, no object code.

-A file,… Load as PROGRAM.

-C file,… Load as LIBRARY.

INHERENT

Syntax: file,…

Use Inherent to link files normally, and generate output code.

INPUT

§14 XLINK ref 18/9/96, 5:19 pm151

152

AA90–1

INHERENT, NO OBJECT CODE (-E)

Syntax: -E file,…

Use Inherent, no object code (-E) to empty load specified input files;
they will be processed normally in all regards by the linker but output
code will not be generated for these files.

One potential use for this feature is in creating separate output files for
programming multiple EPROMs. This is done by empty loading all
input files except the ones you want to appear in the output file.

In the following example a project consists of four files, file1 to file4,
but we only want object code generated for file4 to be put into an
EPROM:

-E file1,file2,file3
file4
-o project.hex

To read object files from v:\general\lib and c:\project\lib:

-Iv:\general\lib;c:\project\lib

LOAD AS PROGRAM (-A)

Syntax: -A file,…

Use Load as PROGRAM (-A) to temporarily force all of the modules
within the specified input files to be loaded as if they were all program
modules, even if some of the modules have the LIBRARY attribute.

This option is particularly suited for testing library modules before they
are installed in a library file, since the -A option will override an
existing library module with the same entries. In other words, XLINK
will load the module from the input file specified in the -A argument
instead of one with an entry with the same name in a library module.

For example, to load the user-written library module putchar.r03
instead of the standard one in the CLIB library:

-! these lines are in an XCL file … -!
-A putchar
CLIB

This assumes that the putchar file contains the same global entry as one
of the modules in CLIB.

INPUT

§14 XLINK ref 18/9/96, 5:19 pm152

153

AA90–1

LOAD AS LIBRARY (-C)

Syntax: -C file,…

Use -C to temporarily cause all of the modules within the specified
input files to be treated as if they were all library modules, even if some
of the modules have the PROGRAM attribute. This means that the
modules in the input files will be loaded only if they contain an entry
that is referenced by another loaded module.

For example, to load the user-defined CSTARTUP module from the file
cstartup instead of the program module of the same name in CLIB:

-! these lines are in an XCL file -!
cstartup
-C CLIB

This allows you to test the CSTARTUP module before installing it in the
library.

COMMAND LINE The following additional options can be set from the command line or
in XCL files:

-! comment -! Comment delimiter.

-C file, … Conditionally load input files.

-ca90 Processor type.

-d Disable code generation.

-enew=old[,old] … Rename external symbols.

-m Use less host memory.

-n Ignore local symbols.

-S Silent operation.

-t Temporary file.

The C compiler includes default XCL files for each chip option and
memory model.

COMMAND LINE

§14 XLINK ref 18/9/96, 5:19 pm153

154

AA90–1

COMMENT DELIMITER (-!)

Syntax: -! comment -!

Use -! to bracket off comments in an XLINK .xcl file. Unless the -! is
at the beginning of a line, it must be preceded by a space or tab.

For example, to load the user-written library module putchar.r90
instead of the standard one in the CLIB library:

-! these lines are in an XCL file … -!
-A putchar
CLIB

This assumes that the putchar file contains the same global entry as
one of the modules in CLIB.

CONDITIONALLY LOAD INPUT FILES (-C)

Syntax: -C file, …

Use -C to temporarily cause all of the modules within the specified
input files to be treated as if they were all library modules, even if some
of the modules have the PROGRAM attribute. This means that the
modules in the input files will be loaded only if they contain an entry
that is referenced by another loaded module.

For example, to load the user-defined CSTARTUP module from the file
cstartup instead of the program module of the same name in CLIB:

-! these lines are in an XCL file -!
cstartup
-C CLIB

This allows you to test the CSTARTUP module before installing it in the
library.

PROCESSOR TYPE (-c)

Syntax: -ca90

Use -c to set the CPU type to AT90S.

The environment variable XLINK_CPU can be set to install a default for
the -c option so that it does not have to be specified on the command
line; see XLINK_CPU in the AT90S Command Line Interface Guide.

COMMAND LINE

§14 XLINK ref 18/9/96, 5:19 pm154

155

AA90–1

DISABLE CODE GENERATION (-d)

Syntax: -d

Use -d to disable the generation of output code from XLINK. This
option is useful for the trial linking of programs; eg checking for syntax
errors, missing symbol definitions, etc. XLINK will run slightly faster
for larger programs when this option is used.

RENAME EXTERNAL SYMBOLS (-e)

Syntax: -enew=old [,old] …

Use -e to configure a program at link time by redirecting a function call
from one function to another.

This can also be used for creating stub functions; ie when a system is
not yet complete, undefined function calls can be directed to a dummy
routine until the real function has been written.

USE LESS HOST MEMORY (-m)

Syntax: -m

Use -m to reduce the amount of host system memory needed by using
file pointers to all segments and modules, instead of reading all input
files into RAM. If XLINK runs out of host memory during a link, this
option will often help. However, XLINK will run more slowly if the -m
option is used.

The -m option is equivalent to:

set XLINK_MEMORY=0

See XLINK_MEMORY in the AT90S Command Line Interface Guide.

IGNORE LOCAL SYMBOLS (-n)

Syntax: -n

Use -n to ignore all local (non-public) symbols in the input modules.
This option speeds up the linking process and can also reduce the
amount of host memory needed to complete a link. If -n is used, locals
will not appear in the listing cross-reference and will not be passed on
to the output file.

Note that local symbols are only included in files if they were compiled
or assembled with the appropriate option to specify this.

COMMAND LINE

§14 XLINK ref 18/9/96, 5:19 pm155

156

AA90–1

SILENT OPERATION (-S)

Syntax: -S

Use -S to turn off the XLINK sign-on message and final statistics report
so that nothing appears on your screen while it runs. However, it does
not disable error and warning messages or the listing output.

TEMPORARY FILE (-t)

Syntax: -t

Use -t to force XLINK to use a temporary file, with the default name
xlink.tmp in the current directory, to store a large part of the linker
symbol tables. This can significantly reduce the amount of host system
memory needed to link a program with a large number of symbols; eg
more than 1500. In some cases, it may be necessary to use this option to
complete a link process.

Note that the -t option can significantly increase the time it takes to
link a program. The -m file-bound processing option will also be enabled
automatically when -t is used.

The environment variable XLINK_TFILE can be set to an alternate
filename (with drive and directory path) to use for the temporary file;
see XLINK_TFILE in the AT90S Command Line Interface Guide.

SEGMENT CONTROL These options control the allocation of segments.

-bbank_def Define banked segments.

-Zseg_def Define segments.

DEFINE BANKED SEGMENTS (-b)

Syntax: -b [addrtype] [(type)]
segments=first,length,increment

where the parameters are as follows:

SEGMENT CONTROL

§14 XLINK ref 18/9/96, 5:20 pm156

157

AA90–1

addrtype The type of load addresses used when dumping the
code:

omitted Logical addresses with bank number.

Linear physical addresses.

@ 64180-type physical addresses.

type Specifies the memory type for all segments in
segments or bankedsegments, if applicable for the
target processor. If omitted it defaults to UNTYPED.

segments The list of banked segments to be linked.

The delimiter between segments in the list
determines how they are packed:

: (colon) The next segment will be placed in a
new bank.

, (comma) The next segment will be placed in
the same bank as the previous one.

first The start address of the first segment in the banked
segment list. This is a 32-bit value: the high-order
16 bits represent the starting bank number while
the low-order 16 bits represent the start address for
the banks in the logical address area.

length The length of each bank, in bytes. This is a 16-bit
value.

increment The incremental factor between banks, ie the
number that will be added to first to get to the
next bank. This is a 32-bit value: the high-order 16
bits are the bank increment, and the low-order 16
bits are the increment from the start address in the
logical address area.

Use -b to allocate banked segments for a program that is designed for
bank-switched operation. It also enables the banking mode of linker
operation.

There can be more than one -b definition.

SEGMENT CONTROL

§14 XLINK ref 18/9/96, 5:20 pm157

158

AA90–1

For example, to specify that the three code segments BSEG1, BSEG2, and
BSEG3 should be linked into banks starting at 8000, each with a length
of 4000, with an increment between banks of 10000:

-b(CODE)BSEG1,BSEG2,BSEG3=8000,4000,10000

DEFINE SEGMENTS (-Z)

Syntax: -Z [(type)] segments [=|#] [start-end,] …
[address]

where the parameters are as follows:

type Specifies the memory type for all segments in
segments or bankedsegments, if applicable for the
target processor. If omitted it defaults to UNTYPED.

segments A list of one or more segments to be linked,
separated by commas.

The segments are allocated in memory in the same
order as they are listed. Appending +nnnn to a
segment name increases the amount of memory
that XLINK will allocate for that segment by nnnn
bytes.

= or # Specifies how segments are allocated.

= Allocates the segments so they begin
at the start of the specified range
(upwards allocation).

Allocates the segments so they finish
at the end of the specified range
(downwards allocation).

If an allocation operator (and range) is not
specified, the segments will be allocated upwards
from the last segment that was linked, or from
address 0 if no segments have been linked.

start, end Addresses defining a range within which the listed
segments should be placed.

address Start address for placing any remaining segments
to be allocated.

SEGMENT CONTROL

§14 XLINK ref 18/9/96, 5:20 pm158

159

AA90–1

Use -Z to specify how and where segments will be allocated in the
memory map.

If the linker finds a segment in an input file that is not defined either
with -Z or -b (banked definition command), a warning will be
displayed by the linker. However, the segment will still be allocated as if
it were listed in the last segment definition; ie at the next available
address.

There can be more than one -Z definition.

Additional related topics and optional forms for -Z are described below.

Allocation segment types
The following table lists the different types of segments that can be
processed by XLINK:

Segment type Description

STACK Allocated from high to low addresses by default. The
aligned segment size is subtracted from the load
address before allocation, and successive segments are
placed below the preceding segment.

RELATIVE Allocated from low to high addresses by default.
COMMON

If stack segments are mixed with relative or common segments in a
segment definition, the linker will produce a warning message but will
allocate the segments according to the default allocation set by the first
segment in the segment list.

Common segments have a size equal to the largest declaration found for
the particular segment. That is, if module A declares a common segment
COMSEG with size 4, while module B declares this segment with size 5,
the latter size will be allocated for the segment.

Be careful not to overlay common segments containing code or
initializers.

Relative and stack segments have a size equal to the sum of the different
(aligned) declarations.

SEGMENT CONTROL

§14 XLINK ref 18/9/96, 5:20 pm159

160

AA90–1

Memory types of segments
The optional type parameter is used to assign a type to all of the
segments in the list. The type parameter affects how XLINK processes
the segment overlaps. Additionally, it generates information in some of
the output formats that are used by some hardware emulators and by
C-SPY.

Segment type Description

BIT Bit memory.*

CODE Code memory.

DATA Data memory.

FAR Data in FAR memory. XLINK will not check
access to it, and a part of a segment straddling a
64 Kbyte boundary will be moved upwards to
start at the boundary.

FARC, FARCONST Constant in FAR memory (behaves as above).

FARCODE Code in FAR memory.

HUGE Data in HUGE memory. No straddling problems.

HUGEC, HUGECONST Constant in HUGE memory.

HUGECODE Code in HUGE memory.

NEAR Data in NEAR memory. Accessed using 16-bit
addressing, this segment can be located
anywhere in the 32-bit address space.

NEARC, NEARCONST Constant in NEAR memory.

NPAGE Absolute-addressed data memory.

UNTYPED Default type.

ZPAGE Zero-page data memory.

* The address of a BIT segment is specified in bits, not in bytes. BIT
memory is allocated first.

SEGMENT CONTROL

§14 XLINK ref 18/9/96, 5:20 pm160

161

AA90–1

Range errors
If the ranges specified in the -Z command are too short, it will cause
either error 24 Segment segment overlaps segment segment, if any
segment overlaps another, or error 26 Segment segment is too long, if
the ranges are too small.

By default, XLINK checks to be sure that the various segments that have
been defined (by the -Z command and absolute segments) do not
overlap in memory.

Examples
To locate SEGA at address 0, followed immediately by SEGB:

-Z(CODE)SEGA,SEGB=0

To allocate SEGA downwards from 1000H, followed by SEGB below it:

-Z(CODE)SEGA,SEGB#1000

To allocate specific areas of memory to SEGA and SEGB:

-Z(CODE)SEGA,SEGB=100-200,400-700,1000

In this example SEGA will be placed between address 100 and 200, if it
fits in that amount of space. If it does not, XLINK will try the range
400–700. If none of these ranges are large enough to hold SEGA, it will
start at 1000.

SEGB will be placed, according to the same rules, after segment SEGA. If
SEGA fits the 100–200 range then XLINK will try to put SEGB there as
well (following SEGA). Otherwise, SEGB will go into the 400 to 700 range
if it is not too large, or else it will start at 1000.

-Z(NEAR) SEGA,SEGB=19000-1FFFF

Segments SEGA and SEGB will be dumped at addresses 19000 to 1FFFF
but the default 16-bit addressing mode will be used to access the data (ie
9000 to FFFF).

SEGMENT CONTROL

§14 XLINK ref 18/9/96, 5:20 pm161

162

AA90–1

SEGMENT CONTROL

§14 XLINK ref 18/9/96, 5:20 pm162

163

AA90–1

XLINK OUTPUT FORMATS
This chapter gives a summary of the XLINK output formats.

SINGLE OUTPUT FILE

The following formats result in the generation of a single output file:

Format Type Extension Address type

AOMF8051† binary from CPU N

AOMFH8† binary from CPU NL

AOMF8096† binary from CPU N

ASHLING binary none N

ASHLING-6301† binary from CPU N

ASHLING-64180† binary from CPU NS

ASHLING-6801† binary from CPU N

ASHLING-8080† binary from CPU NS

ASHLING-8085† binary from CPU NS

ASHLING-Z80† binary from CPU NS

DEBUG† binary .dbg NL

EXTENDED-TEKHEX† ASCII from CPU NLPS

HP-CODE binary .x NLPS

HP-SYMB binary .l NLPS

INTEL-STANDARD ASCII from CPU N

INTEL-EXTENDED ASCII from CPU NLPS

MILLENIUM (Tektronix) ASCII from CPU N

MOTOROLA ASCII from CPU NLPS

MPDS-CODE binary .tsk N

MPDS-SYMB binary .sym NLPS

MSD ASCII .sym N

§15 XLINK formats 18/9/96, 5:20 pm163

XLINK OUTPUT FORMATS

164

AA90–1

Format Type Extension Address type

NEC-SYMBOLIC† ASCII .sym N

NEC2-SYMBOLIC† ASCII .sym N

NEC78K-SYMBOLIC† ASCII .sym N

PENTICA-A ASCII .sym NLPS

PENTICA-B ASCII .sym NLPS

PENTICA-C ASCII .sym NLPS

PENTICA-D ASCII .sym NLPS

RCA ASCII from CPU N

SYMBOLIC ASCII from CPU NLPS

SYSROF† binary .abs NLPS

TEKTRONIX (Millenium) ASCII .hex N

TI7000 (TMS7000) ASCII from CPU N

TYPED ASCII from CPU NLPS

ZAX ASCII from CPU NLPS

† format depends on the typing of the segments; ie the type field
specified in the XLINK -Z option is important.

Address type
The address type is one of the following:

N = Non-banked address.

L = Banked logical address.

P = Banked physical address.

S = Banked 64180 physical address.

§15 XLINK formats 18/9/96, 5:20 pm164

XLINK OUTPUT FORMATS

165

AA90–1

TWO OUTPUT FILES

The following formats result in the generation of two output files:

Format Code format Exten. Symbolic format Exten.

DEBUG-MOTOROLA DEBUG .axx MOTOROLA .obj

DEBUG-INTEL-STD DEBUG .axx INTEL-STD .hex

DEBUG-INTEL-EXT DEBUG .axx INTEL-EXT .hex

HP HP-CODE .x HP-SYMB .l

MPDS MPDS-CODE .tsk MPDS-SYMB .sym

MPDS-I INTEL-STANDARD .hex MPDS-SYMB .sym

MPDS-M MOTOROLA .s19 MPDS-SYMB .sym

MSD-I INTEL-STANDARD .hex MSD .sym

MSD-M MOTOROLA .hex MSD .sym

MSD-T MILLENIUM .hex MSD .sym

NEC INTEL-STANDARD .hex NEC-SYMB .sym

NEC2 INTEL-STANDARD .hex NEC2-SYMB .sym

PENTICA-AI INTEL-STANDARD .obj PENTICA-A .sym

PENTICA-AM MOTOROLA .obj PENTICA-A .sym

PENTICA-BI INTEL-STANDARD .obj PENTICA-B .sym

PENTICA-BM MOTOROLA .obj PENTICA-B .sym

PENTICA-CI INTEL-STANDARD .obj PENTICA-C .sym

PENTICA-CM MOTOROLA .obj PENTICA-C .sym

PENTICA-DI INTEL-STANDARD .obj PENTICA-D .sym

PENTICA-DM MOTOROLA .obj PENTICA-D .sym

ZAX-I INTEL-STANDARD .hex ZAX .sym

ZAX-M MOTOROLA .hex ZAX .sym

§15 XLINK formats 18/9/96, 5:20 pm165

XLINK OUTPUT FORMATS

166

AA90–1

OUTPUT FORMAT VARIANTS

The following enhancements can be selected for the specified output
formats, using the Format variant (-Y) option:

Output format Option Description

PENTICA-A,B,C,D YO Symbols as modules:symbolname.
and MPDS-SYMB Y1 Labels and lines as module:symbolname.

Y2 Lines as module:symbolname.

AOMF8051 Y0 Extra type of information for Hitex.

INTEL-STANDARD Y0 End only with :00000001FF.
Y1 End with PGMENTRY, else :0000001FF.

MPDS-CODE YO Fill with 0xFF instead.

DEBUG, -r Y# Old UBROF version.

INTEL-EXTENDED Y0 Segmented variant.
Y1 32-bit linear variant.

Refer to the file XLINK.DOC for additional options that are available.

§15 XLINK formats 18/9/96, 5:20 pm166

167

AA90–1

XLIB LIBRARIAN
This chapter describes the XLIB Librarian, which is designed to allow
you to create and maintain relocatable libraries of routines.

INTRODUCTION Like the XLINK Linker, the XLIB Librarian uses the UBROF standard
object format (Universal Binary Relocatable Object Format) to allow it
to support a wide range of 32-bit byte-oriented processors (applies to
almost all current major microprocessors).

LIBRARIES

A library is a single file that contains a number of relocatable object
modules, each of which can be loaded independently from other
modules in the file as it is needed.

Normally, the modules in a library file all have the LIBRARY attribute,
which means that they will only be loaded by the linker if they are
actually needed in the program. This is referred to as demand loading of
modules.

On the other hand, a module with the PROGRAM attribute is always
loaded when the file in which it is contained is processed by the linker.

A library file is no different from any other relocatable object file
produced by the assembler or C compiler, except that it includes a
number of modules of the LIBRARY type.

USING LIBRARIES WITH C PROGRAMS

All C programs make use of libraries, and the IAR Systems C Compilers
are supplied with a number of standard library files.

Most C programmers will use the XLIB Librarian at some point, for one
of the following reasons:

◆ To replace or modify a module in one of the standard libraries. For
example, the librarian can be used to replace the distribution
versions of the CSTARTUP and/or putchar modules with ones that
you have customized.

§16 XLIB Librarian 18/9/96, 5:20 pm167

XLIB LIBRARIAN

168

AA90–1

◆ To add C or assembler modules to the standard library file so they
will always be available whenever a C program is linked.

◆ To create custom library files that can be linked into their programs,
as needed, along with the standard C library.

USING LIBRARIES WITH ASSEMBLER PROGRAMS

If you are only using assembler there is no need to use libraries.
However, libraries provide the following advantages, especially when
writing medium- and large-sized assembler applications:

◆ They allow you to combine utility modules used in more than one
project into a simple library file. This simplifies the linking process
by eliminating the need to include a list of input files for all the
modules you need. Only the library module(s) needed for the
program will be included in the output file.

◆ They simplify program maintenance by allowing multiple modules
to be placed in a single assembler source file. Each of the modules
can be loaded independently as a library module.

◆ They reduce the number of object files that make up an application,
maintenance, and documentation.

You can create your assembly language library files using one of two
basic methods:

◆ A library file can be created by assembling a single assembler source
file which contains multiple library-type modules. The resulting
library file can then be modified using XLIB.

◆ A library file can be produced by using the XLIB Librarian to merge
any number of existing modules together to form a user-created
library.

The NAME and MODULE assembler directives are used to declare modules
as being of PROGRAM or LIBRARY type, respectively.

§16 XLIB Librarian 18/9/96, 5:20 pm168

169

AA90–1

XLIB COMMAND
SUMMARY
This chapter summarizes the librarian commands, classified according
to their function.

A full alphabetical reference list of commands is given in the next
chapter.

LIBRARY LISTING COMMANDS

LIST-ALL-SYMBOLS Lists every symbol in modules.

LIST-CRC Lists CRC values of modules.

LIST-DATE-STAMPS Lists dates of modules.

LIST-ENTRIES Lists PUBLIC symbols in modules.

LIST-EXTERNALS Lists EXTERN symbols in modules.

LIST-MODULES Lists modules.

LIST-OBJECT-CODE Lists low-level relocatable code.

LIST-SEGMENTS Lists segments in modules.

LIBRARY EDITING COMMANDS

DELETE-MODULES Removes modules from a library.

FETCH-MODULES Adds modules to a library.

INSERT-MODULES Moves modules in a library.

MAKE-LIBRARY Changes a module to library type.

MAKE-PROGRAM Changes a module to program type.

RENAME-ENTRY Renames PUBLIC symbols.

RENAME-EXTERNAL Renames EXTERN symbols.

RENAME-GLOBAL Renames EXTERN and PUBLIC symbols.

RENAME-MODULE Renames one or more modules.

§17 XLIB summary 18/9/96, 5:20 pm169

XLIB COMMAND SUMMARY

170

AA90–1

RENAME-SEGMENT Renames one or more segments.

REPLACE-MODULES Updates executable code.

MISCELLANEOUS LIBRARY COMMANDS

COMPACT-FILE Shrinks library file size.

DEFINE-CPU Specifies CPU type.

DIRECTORY Displays available object files.

DISPLAY-OPTIONS Displays XLIB options.

ECHO-INPUT Command file diagnostic tool.

EXIT Returns to operating system.

HELP Displays help information.

ON-ERROR-EXIT Quits on a batch error.

QUIT Returns to operating system.

REMARK Comment in command file.

§17 XLIB summary 18/9/96, 5:20 pm170

171

AA90–1

XLIB COMMAND
REFERENCE
This chapter gives a full syntactic and functional description of all
librarian commands.

The individual words of an identifier can be abbreviated to the limit of
ambiguity. For example, LIST-MODULES can be abbreviated to L-M.

When running XLIB you can press R at any time to prompt for
information, or display a list of the possible options.

PARAMETERS

The following parameters are common to many of the XLIB commands.

Parameter What it means

objectfile File containing object modules.

start, end The first and last modules to be processed, in one of
the following forms:

n The nth module.

$ The last module.

name Module name.

name+n The module n modules after name.

$-n The module n modules before the last.

listfile File to which a listing will be sent.

source A file from which modules will be read.

destination The file to which modules will be sent.

MODULE EXPRESSIONS

In most of the XLIB commands you can or must specify a source
module (like oldname in RENAME-MODULE), or a range of modules
(startmodule, endmodule).

§18 XLIB commands 18/9/96, 5:21 pm171

172

AA90–1

Internally in all XLIB operations modules are numbered upwards from
one. Modules may be referred to by the actual name of the module, by
the name plus or minus a relative expression, or by an absolute number.
The latter is very useful when a module name is very long, unknown, or
contains unusual characters (like space or comma). Below is a list of the
available variations on module expressions:

Name Description

3 The third module.

$ The last module.

name+4 The module 4 modules after name.

name-12 The module 12 modules before name.

$-2 The module 2 modules before the last module.

The command LIST-MOD FILE,,$-2 will thus list the three last
modules in FILE on the terminal.

LIST FORMAT

The LIST commands give a list of symbols, where each symbol has one
of the following prefixes:

Prefix Description

nn.Pgm A program module with relative number nn.

nn.Lib A library module with relative number nn.

Ext An external in the current module.

Ent An entry in the current module.

Loc A local in the current module.

Rel A standard segment in the current module.

Stk A stack segment in the current module.

Com A common segment in the current module.

XLIB COMMAND REFERENCE

§18 XLIB commands 18/9/96, 5:21 pm172

173

AA90–1

COMPACT-FILE Shrinks library file size.

SYNTAX

COMPACT-FILE objectfile

DESCRIPTION

Use COMPACT-FILE to concatenate short, absolute records into longer
records of variable length. This will decrease the size of a library file by
about 5%, to give library files which take up less time during the
loader/linker process.

EXAMPLES

The following command compacts the file maxmin.rxx:

COMPACT-FILE maxmin R

This displays:

20 byte(s) deleted

DEFINE-CPU Specifies CPU type.

SYNTAX

DEFINE-CPU cpu

PARAMETERS

cpu The target processor.

DESCRIPTION

This command must be issued before any operations on object files can
be done.

EXAMPLES

The following command defines the CPU as IAR2000:

DEF-CPU IAR2000 R

COMPACT-FILE

§18 XLIB commands 18/9/96, 5:21 pm173

174

AA90–1

DELETE-MODULES Removes modules from a library.

SYNTAX

DELETE-MODULES objectfile start end

DESCRIPTION

Use DELETE-MODULES to delete the specified modules.

EXAMPLES

The following command deletes module 2 from the file math.rxx:

DEL-MOD math 2 2 R

DIRECTORY Displays available object files.

SYNTAX

DIRECTORY [specifier]

DESCRIPTION

Use DIRECTORY to display on the terminal all files of the type that
applies to the target processor. If no specifier is given, the current
directory is listed.

EXAMPLES

The following command lists object files in the current directory:

DIR R

It displays:

general 770
math 502
maxmin 375

DELETE-MODULES

§18 XLIB commands 18/9/96, 5:21 pm174

175

AA90–1

DISPLAY-OPTIONS Displays XLIB options.

SYNTAX

DISPLAY-OPTIONS [listfile]

DESCRIPTION

Use DISPLAY-OPTIONS to list on the listfile the names of all the
CPUs which are recognized by this version of XLIB. The default file
types of object files for the different CPUs are also listed. After that a
list of all UBROF tags is output.

EXAMPLES

To list the options to the file opts.lst:

DISPLAY-OPTIONS opts R

ECHO-INPUT Command file diagnostic tool.

SYNTAX

ECHO-INPUT

DESCRIPTION

ECHO-INPUT is useful when debugging command files in batch mode
because it makes all command input visible on the terminal. In the
interactive mode it has no effect.

EXAMPLES

In a batch file

ECHO-INPUT

echoes all subsequent XLIB commands.

DISPLAY-OPTIONS

§18 XLIB commands 18/9/96, 5:21 pm175

176

AA90–1

EXIT Returns to operating system.

SYNTAX

EXIT

DESCRIPTION

Use EXIT to exit from XLIB after an interactive session.

EXAMPLES

To exit from XLIB:

EXIT R

FETCH-MODULES Adds modules to a library.

SYNTAX

FETCH-MODULES source destination [start] [end]

DESCRIPTION

Use FETCH-MODULES to append the specified modules to the
destination file. If destination already exists, it must be empty or
contain valid object modules; otherwise it will be created.

EXAMPLES

The following command copies module mean from math.rxx to
general.rxx:

FETCH-MOD math general mean R

HELP Displays help information.

SYNTAX

HELP [command] [listfile]

EXIT

§18 XLIB commands 18/9/96, 5:21 pm176

177

AA90–1

PARAMETERS

command Command for which help is displayed.

DESCRIPTION

If the HELP command is given with no parameters, a list of the available
commands will be displayed on the terminal. If a parameter is specified,
all commands which match the parameter will be displayed with a brief
explanation of their syntax and function. A * matches all commands.
HELP output can be directed to any file.

EXAMPLES

For example, the command:

HELP LIST-MOD R

displays:

LIST-MODULES <Object file> [<List file>] [<Start module>]
[<End module>]
 List the module names from [<Start module>] to
 [<End module>].

INSERT-MODULES Moves modules in a library.

SYNTAX

INSERT-MODULES objectfile start end {BEFORE | AFTER} dest

DESCRIPTION

Use INSERT-MODULES to move the specified modules before or after the
dest.

EXAMPLES

The following command moves the module mean before module min in
the file math.rxx:

INSERT-MOD math mean mean BEFORE min R

INSERT-MODULES

§18 XLIB commands 18/9/96, 5:21 pm177

178

AA90–1

LIST-ALL-SYMBOLS Lists every symbol in modules.

SYNTAX

LIST-ALL-SYMBOLS objectfile [listfile] [start] [end]

DESCRIPTION

Use LIST-ALL-SYMBOLS to list all symbols (module names, segments,
externals, entries, and locals) for the specified modules in the
objectfile. They are listed to the listfile.

Each symbol is identified with a prefix; see List format, page 172.

EXAMPLES

The following command lists all the symbols in math.rxx:

LIST-ALL-SYMBOLS math R

This displays:

 1. Lib max
 Rel CODE
 Ent max
 Loc A
 Loc B
 Loc C
 Loc ncarry
 2. Lib mean
 Rel DATA
 Rel CODE
 Ext max
 Loc A
 Loc B
 Loc C
 Loc main
 Loc start
 3. Lib min
 Rel CODE
 Ent min
 Loc carry

LIST-ALL-SYMBOLS

§18 XLIB commands 18/9/96, 5:21 pm178

179

AA90–1

LIST-CRC Lists CRC values of modules.

SYNTAX

LIST-CRC objectfile [listfile] [start] [end]

DESCRIPTION

Use LIST-CRC to list the module names and their associated CRCs for
the specified modules.

Each symbol is identified with a prefix; see List format, page 172.

EXAMPLES

The following command lists the CRCs for all modules in math.rxx:

LIST-CRC math R

This displays:

 EC41 1. Lib max
 ED72 2. Lib mean
 9A73 3. Lib min

LIST-DATE-STAMPS Lists dates of modules.

SYNTAX

LIST-DATE-STAMPS objectfile [listfile] [start] [end]

DESCRIPTION

Use LIST-DATE-STAMPS to list the module names and their associated
generation dates for the specified modules.

Each symbol is identified with a prefix; see List format, page 172.

EXAMPLES

The following command lists the date stamps for all the modules in
math.rxx:

LIST-DATE-STAMPS math R

LIST-CRC

§18 XLIB commands 18/9/96, 5:21 pm179

180

AA90–1

This displays:

 09/Jan/96 1. Lib max
 09/Jan/96 2. Lib mean
 09/Jan/96 3. Lib min

LIST-ENTRIES Lists PUBLIC symbols in modules.

SYNTAX

LIST-ENTRIES objectfile [listfile] [start] [end]

DESCRIPTION

Use LIST-ENTRIES to list the names and associated entries for the
specified modules.

Each symbol is identified with a prefix; see List format, page 172.

EXAMPLES

The following command lists the entries for all the modules in
math.rxx:

LIST-ENTRIES math R

This displays:

 1. Lib max
 Ent max
 2. Lib mean
 3. Lib min
 Ent min

LIST-EXTERNALS Lists EXTERN symbols in modules.

SYNTAX

LIST-EXTERNALS objectfile [listfile] [start] [end]

LIST-ENTRIES

§18 XLIB commands 18/9/96, 5:21 pm180

181

AA90–1

DESCRIPTION

Use LIST-EXTERNALS to list the module names and associated externals
for the specified modules.

Each symbol is identified with a prefix; see List format, page 172.

EXAMPLES

The following command lists the externals for all the modules in
math.rxx:

LIST-EXT math R

This displays:

 1. Lib max
 2. Lib mean
 Ext max
 3. Lib min

LIST-MODULES Lists modules.

SYNTAX

LIST-MODULES objectfile [listfile] [start] [end]

DESCRIPTION

Use LIST-MODULES to list the module names for the specified modules.

Each symbol is identified with a prefix; see List format, page 172.

EXAMPLES

The following command lists all the modules in math.rxx:

LIST-MOD math R

It produces the following output:

 1. Lib max
 2. Lib min
 3. Lib mean

LIST-MODULES

§18 XLIB commands 18/9/96, 5:21 pm181

182

AA90–1

LIST-OBJECT-CODE Lists low-level relocatable code.

SYNTAX

LIST-OBJECT-CODE objectfile [listfile]

DESCRIPTION

Use LIST-OBJECT-CODE to list the contents of the objectfile on the
listfile in an ASCII format.

Each symbol is identified with a prefix; see List format, page 172.

EXAMPLES

The following command lists the object code of math.rxx to
object.lst:

LIST-OBJECT-CODE math object R

LIST-SEGMENTS Lists segments in modules.

SYNTAX

LIST-SEGMENTS objectfile [listfile] [start] [end]

DESCRIPTION

Use LIST-SEGMENTS to list the module names and associated segments
for the specified modules.

Each symbol is identified with a prefix; see List format, page 172.

EXAMPLES

The following command lists the segments in module mean in the file
math.rxx:

LIST-SEG math,,mean mean R

Note the use of two commas to skip the listfile parameter.

LIST-OBJECT-CODE

§18 XLIB commands 18/9/96, 5:21 pm182

183

AA90–1

This produces the following output:

 2. Lib mean
 Rel DATA
 Rel CODE

MAKE-LIBRARY Changes a module to library type.

SYNTAX

MAKE-LIBRARY objectfile [start] [end]

DESCRIPTION

Use MAKE-LIBRARY to change the module header attributes to
conditionally loaded for the specified modules.

EXAMPLES

The following command converts all the modules in main.rxx to
library modules:

MAKE-LIB main R

MAKE-PROGRAM Changes a module to program type.

SYNTAX

MAKE-PROGRAM objectfile [start] [end]

DESCRIPTION

Use MAKE-PROGRAM to change the module header attributes to
unconditionally loaded for the specified modules.

EXAMPLES

The following command converts module start in main.rxx into a
program module:

MAKE-PROG main start R

MAKE-LIBRARY

§18 XLIB commands 18/9/96, 5:21 pm183

184

AA90–1

ON-ERROR-EXIT Quits on a batch error.

SYNTAX

ON-ERROR-EXIT

DESCRIPTION

Use ON-ERROR-EXIT to make the librarian abort if an error is found.
Most suited for use in batch mode.

EXAMPLES

The following batch file aborts if the FETCH-MODULES command fails:

ON-ERROR-EXIT
FETCH-MODULES math new

QUIT Returns to operating system.

SYNTAX

QUIT

DESCRIPTION

Use QUIT to exit and return to the operating system.

EXAMPLES

To quit from XLIB:

QUIT R

REMARK Comment in command file.

SYNTAX

REMARK text

ON-ERROR-EXIT

§18 XLIB commands 18/9/96, 5:21 pm184

185

AA90–1

DESCRIPTION

Use REMARK to include a comment.

EXAMPLES

The following example illustrates the use of a comment in an XLIB
command file:

REM Now compact file
COMPACT-FILE math

RENAME-ENTRY Renames PUBLIC symbols.

SYNTAX

RENAME-ENTRY objectfile old new [start] [end]

DESCRIPTION

Use RENAME-ENTRY to rename all occurrences of an entry from old to
new in the specified modules.

EXAMPLES

The following command renames the entry for modules 2 to 4 in
math.rxx from mean to average:

RENAME-ENTRY math mean average 2 4 R

RENAME-EXTERNAL Renames EXTERN symbols.

SYNTAX

RENAME-EXTERNAL objectfile old new [start] [end]

DESCRIPTION

Use RENAME-EXTERNAL to rename all occurrences of an external from
old to new in the specified modules.

RENAME-ENTRY

§18 XLIB commands 18/9/96, 5:21 pm185

186

AA90–1

EXAMPLES

The following command renames all external symbols in math.rxx
from error to err:

RENAME-EXT math error err R

RENAME-GLOBAL Renames EXTERN and PUBLIC symbols.

SYNTAX

RENAME-GLOBAL objectfile old new [start] [end]

DESCRIPTION

Use RENAME-GLOBAL to rename all occurrences of an external or entry
from old to new in the specified modules.

EXAMPLES

The following command renames all occurrences of mean to average in
math.rxx:

RENAME-GLOBAL math mean average R

RENAME-MODULE Renames one or more modules.

SYNTAX

RENAME-MODULE objectfile old new

DESCRIPTION

Use RENAME-MODULE to rename a module. Note that if there is more
than one module with name old, only the first encountered is changed.

EXAMPLES

The following example renames the module average to mean in the file
math.rxx:

RENAME-MOD math average mean R

RENAME-GLOBAL

§18 XLIB commands 18/9/96, 5:21 pm186

187

AA90–1

RENAME-SEGMENT Renames one or more segments.

SYNTAX

RENAME-SEGMENT objectfile old new [start] [end]

DESCRIPTION

Use RENAME-SEGMENT to rename all occurrences of a segment from
name old to new in the specified modules.

EXAMPLES

The following example renames all CODE segments to ROM in the file
math.rxx:

RENAME-SEG math CODE ROM R

REPLACE-MODULES Updates executable code.

SYNTAX

REPLACE-MODULES source destination

DESCRIPTION

Use REPLACE-MODULES to replace modules with the same name from
source to destination. All replacements are logged on the terminal.
The main application for this command is to update large run-time
libraries etc.

EXAMPLES

The following example replaces modules in math.rxx with modules
from newmath.rxx:

REPLACE-MOD math newmath R

This displays:

Replacing module 'max'
Replacing module 'mean'
Replacing module 'min'

RENAME-SEGMENT

§18 XLIB commands 18/9/96, 5:21 pm187

188

AA90–1

REPLACE-MODULES

§18 XLIB commands 18/9/96, 5:21 pm188

189

AA90–1

ASSEMBLER DIAGNOSTICS
This chapter lists the errors and warnings for the AT90S Assembler.
For details of the XLINK Linker and XLIB Librarian error messages see
the chapters XLINK diagnostics, and XLIB diagnostics.

INTRODUCTION Error messages are printed on the terminal, as well as on the optional
list file.

All errors are issued as complete, self-explanatory messages. For
example:

 ADS B,C
-----------^
"testfile.s90",4 Error[40]: bad instruction

The error message consists of the erroneous source line, with a pointer
to the faulty spot, followed by the diagnostic and source line number. If
include files are used, error messages will be preceded by the source line
number and name of current file:

 ADS B,C
-----------^
"subfile.h",4 Error[40]: bad instruction

The error messages produced by the assembler fall into six categories:

◆ Command line error messages.

◆ Assembly warning messages.

◆ Assembly error messages.

◆ Assembly fatal error messages.

◆ Memory overflow messages.

◆ Assembler internal error messages.

§19 Assembler diagnostics 18/9/96, 5:21 pm189

ASSEMBLER DIAGNOSTICS

190

AA90–1

COMMAND LINE ERROR MESSAGES

Command line errors occur when the assembler is invoked with bad
parameters. The most common situation is when a file cannot be
opened, or with duplicate, mis-spelled, or missing command line
switches. The messages are self-explanatory.

ASSEMBLY ERROR MESSAGES

Assembly error messages are produced when the assembler has found a
construct which violates the language rules. These are listed in the
section Error messages, page 191.

ASSEMBLY WARNING MESSAGES

Assembly warning messages are produced when the assembler has
found a construct which probably is due to a programming error or
omission. These are listed in the section Warning messages, page 199.

ASSEMBLY FATAL ERROR MESSAGES

Assembly fatal error messages are produced when the assembler has
found a user error so severe that further processing is not considered
meaningful. After the diagnostic message has been issued the assembly
is immediately terminated. The fatal error messages are identified as
‘Fatal’ in the error messages list.

MEMORY OVERFLOW MESSAGES

The assembler is a memory-based program that in the case of a system
with a small primary memory or in the case of very large source files
may run out of memory. This is identified by the special message:

* * * ASSEMBLER OUT OF MEMORY * * *

Dynamic memory used: nnnnnn bytes

If such a situation occurs the solution is either to add system memory or
to split source files into smaller modules. However, with 1 Mbyte RAM
the assembler capacity should be sufficient for all reasonably sized
source files.

§19 Assembler diagnostics 18/9/96, 5:21 pm190

ASSEMBLER DIAGNOSTICS

191

AA90–1

ASSEMBLER INTERNAL ERROR MESSAGES

During assembly a number of internal consistency checks are
performed and if any of these checks fail the assembler will terminate
after giving a short description of the problem. Such errors should
normally not occur and should be reported to the IAR Systems technical
support group. Please include all possible information about the
problem and, preferably, a disk containing a copy of the program that
generated the internal error.

ERROR MESSAGES GENERAL

The following table lists the general error messages:

No Error message Suggestion

0 Invalid syntax The assembler could not decode
the expression.

1 Too deep #include Fatal. Assembler limit for nesting
nesting (max. is 10) of #include files exceeded.

Recursive #include could be the
reason.

2 Failed to open #include Fatal. Could not open a #include
file 'name' file. File does not exist in specified

directories. Check -I prefixes.

3 Invalid #include file Fatal. #include file name must be
name written <file> or "file".

4 Unexpected end of file Fatal. End of file encountered
encountered within a conditional assembly, the

repeat directive or during macro
expansion. Probable cause is a
missing end of conditional
assembly etc.

5 Too long source line Source line length exceeds
(max. is 512 characters) assembler limit.
truncated

6 Bad constant Character that is not a legal digit
was encountered.

§19 Assembler diagnostics 18/9/96, 5:21 pm191

ASSEMBLER DIAGNOSTICS

192

AA90–1

No Error message Suggestion

7 Hexadecimal constant Prefix 0x or 0X of hexadecimal
without digits constant found without following

hexadecimal digits.

8 Invalid floating point Too large or invalid syntax of
constant floating-point constant.

9 Too many errors
encountered (>100).

10 Space or tab expected

11 Too deep block nesting Preprocessor directives are nested
(max is 50) too deep.

12 String too long (max Assembler string length limit
is 509) exceeded.

13 Missing delimiter in No closing delimiter ' or " was
literal or character found in character or literal
constant constant.

14 Missing #endif A #if, #ifdef, or #ifndef was
found but had no matching
#endif.

15 Invalid character
encountered: <char>;
ignored

16 Identifier expected A name of a label or symbol was
expected.

17 ')' expected

18 No such pre-processor # was followed by an unknown
command: <command> identifier.

19 Unexpected token found The pre-processor line was not
in pre-processor line empty after the argument part was

read.

20 Argument to #define too
long (max is <max>)

§19 Assembler diagnostics 18/9/96, 5:21 pm192

ASSEMBLER DIAGNOSTICS

193

AA90–1

No Error message Suggestion

21 Too many formal
parameters for #define
(max is 127)

22 Macro parameter A #define symbol’s formal
<parameter> redefined parameter was repeated.

23 ',' or ')' expected

24 Unmatched #else, #endif Fatal. Missing #if, #ifdef, or
or #elif #ifndef.

25 #error <error>. Printout via the #error directive.

26 '(' expected

27 Too many active macro Fatal. Pre-processor limit
parameters (max is 256) exceeded.

28 Too many nested Fatal. Pre-processor limit
parameterized macros exceeded.
(max is <max>)

29 Too deep macro nesting Fatal. Pre-processor limit
(max is 100) exceeded.

30 Actual macro parameter A single macro (in #define)
too long (max is 512) argument may not exceed the

length of a source line.

31 Macro <macro> called The number of parameters used
with too many parameters was more than the number in the

macro declaration.

32 Macro <macro> called The number of parameters used
with too few parameters was less than the number in the

macro declaration (#define).

33 too many MACRO arguments The number of assembler macros
exceeds 32.

34 may not be redefined Assembler macros may not be
redefined.

35 no name on macro Assembler macro definition
without a label was encountered.

§19 Assembler diagnostics 18/9/96, 5:21 pm193

ASSEMBLER DIAGNOSTICS

194

AA90–1

No Error message Suggestion

36 Illegal formal parameter A parameter that was not an
in macro identifier was found.

37 ENDM or EXITM not in ENDM directive or EXITM directive
macro encountered while not inside

macro.

38 '>' expected but found A < was found but no matching >.
end-of-line

39 END before start of End-of-module directive has no
module matching MODULE directive.

40 bad instruction The mnemonic/directive does not
exist.

41 bad label Labels must begin with A–Z, a–z,
_, or ?. The succeeding characters
must be A–Z, a–z, 0–9, _, or ?.
Labels cannot have the same name
as a predefined symbol.

42 duplicate label The label has already appeared in
the label field or been declared as
EXTERN.

43 illegal effective The addressing mode (operands)
address is not allowed for this mnemonic.

44 ',' expected A comma was expected but not
found.

45 name duplicated The name of RSEG, STACK, or
COMMON segments is already used
but for something else.

46 segment type expected In RSEG, STACK, or COMMON
directive : was found but the
segment type that should follow
was not valid.

47 segment name expected The RSEG, STACK, and COMMON
directives need a name.

§19 Assembler diagnostics 18/9/96, 5:21 pm194

ASSEMBLER DIAGNOSTICS

195

AA90–1

No Error message Suggestion

48 value out of range The value exceeds its limits.
'<range>'

49 alignment already set RSEG, STACK, and COMMON segment
do not allow alignment to be set
more than once. Use ALIGN, EVEN,
or ODD instead.

50 undefined symbol: The symbol did not appear in label
<symbol> field nor in an EXTERN or sfr

declaration.

51 Can't be both PUBLIC Symbols can be declared as either
and EXTERN PUBLIC or EXTERN.

52 EXTERN not allowed Reference to EXTERN symbols is
not allowed in this context.

53 expression must be The expression cannot involve
absolute relocatable or external symbols.

54 expression can not be The assembler must be able to
forward solve the expression the first time

this expression is encountered.

55 illegal size The maximum size for
expressions is 32 bits.

56 too many digits The value exceeds the size of the
destination.

57 unbalanced conditional Missing conditional assembly IF
assembly directives or ENDIF.

58 ELSE without IF Missing conditional assembly IF.

59 ENDIF without IF Missing conditional assembly IF.

60 unbalanced structured Missing structured assembly IF or
assembly directives ENDIF.

61 '+' or '-' expected Plus or minus sign missing.

62 Illegal operation on An illegal operation has been used
extern or public symbol on a public or external symbol; eg

SET.

§19 Assembler diagnostics 18/9/96, 5:21 pm195

ASSEMBLER DIAGNOSTICS

196

AA90–1

No Error message Suggestion

63 Illegal operation on It is not allowed to make a non-
non-constant label constant symbol PUBLIC or

EXTERN.

64 Extern or unsolved The expression must be solved at
expression assembly time, ie not include

external references.

65 '=' expected Equals sign was missing.

66 Segment too long (max The length of ASEG, RSEG, STACK,
is <max>) or COMMON segments is larger than

the addressable length.

67 Public did not appear A symbol was declared PUBLIC
in label field but no label with the same name

was found in the source file.

68 End of block-repeat The repeat directive REPT was not
without start found although the ENDR directive

was.

69 Segment must be The operation is not allowed on
relocatable ASEG.

70 Limit exceeded: <error The value exceeded the limits set
text>, value is: <value> with the LIMIT directive. The
(decimal) error text is set by the user in

the LIMIT directive.

71 Symbol '<symbol>' has An attempt to redeclare an
already been declared EXTERN as EXTERN was made.
EXTERN

72 Symbol '<symbol>' has An attempt to redeclare a PUBLIC
already been declared as PUBLIC was made.
PUBLIC

73 End-of-module missing A PROGRAM or MODULE directive
was encountered before ENDMOD
was found.

74 Expression must yield The expression was evaluated to a
non-negative result negative number, whereas a

positive number was required.

§19 Assembler diagnostics 18/9/96, 5:21 pm196

ASSEMBLER DIAGNOSTICS

197

AA90–1

No Error message Suggestion

75 Repeat directive This error is caused by a REPT
unbalanced directive without a matching

ENDR, or a an ENDR directive
without a matching REPT.

76 End of repeat directive A REPT directive without a closing
is missing ENDR was encountered.

77 LOCALs not allowed in Local symbols must be declared
this context, (<symbol>) within macro definitions.

78 End of macro expected An assembler macro is being
defined but there was no end-of-
macro.

79 End of repeat expected One of the repeat directives is
active, but there was no end-of-
repeat found.

80 End of conditional Conditional assembly is active but
assembly expected there was no end of if.

81 End of structured One of the directives for
assembly expected structured assembly is active but

has no matching END.

82 Misplaced end of A directive that terminates one of
structured assembly the structured assembly directives

was found but no matching START
directive is active.

83 Error in SFR attribute The SFRTYPE directive was used
definition with unknown attributes.

AT90S-SPECIFIC ERROR MESSAGES
The following table lists the AT90S-specific error messages:

No Error message Suggestion

400 Absolute operand is not
possible here

401 Accessing SFR
incorrectly, check
read/write flags

§19 Assembler diagnostics 18/9/96, 5:21 pm197

ASSEMBLER DIAGNOSTICS

198

AA90–1

No Error message Suggestion

402 Accessing SFR using
incorrect size

403 Number out of range.
Valid range is -128
(-0x80) to 255 (0xFF).

404 Bit-number out of range.
Valid range is 0 to 7
(0x07).

405 Address can't be
negative.

406 Register not valid. Use
register R16 – R31 here

407 Register not valid. Use
register Y or Z

408 Port address out of
range. Valid range is
0 to 63 (0x3F).

409 Register displacement
out of range. Valid
range is 0 to 63 (0x3F).

410 Address out of range.
Valid range is 0 to
8388606 (0x7FFFFE).

411 Address must be even.

412 PC offset out of range.
Valid range is -128
(-0x80) to 126 (0x7E).

413 PC offset must be even.

414 Address out of range.
Valid range is 0 to
8190 (0x1FFE).

§19 Assembler diagnostics 18/9/96, 5:21 pm198

ASSEMBLER DIAGNOSTICS

199

AA90–1

No Error message Suggestion

415 PC offset out of range.
Valid range is -4096
(-0x1000) to 4094
(0x0FFE).

416 Port address out of
range. Valid range is
0 to 31 (0x1F).

417 Number out of range.
Valid range is -32
(-0x20) to 63 (0x3F).

418 Register not valid. Use
any of register R24,
R26, R28 and R30 here.

WARNING MESSAGES GENERAL

The following table lists the general warning messages:

No Warning message Suggestion

0 Unreferenced label The label was not used as an
operand nor was it declared public.

1 Nested comment A C comment was nested.

2 Unknown escape sequence A backslash (\) found in a
character constant or string literal
was followed by an unknown
escape character.

3 Non-printable character A non-printable character was
found in a literal or character
constant.

4 Macro or define expected

5 Floating point value Floating point value is too large to
out-of-range be represented by the floating

point system of the target.

§19 Assembler diagnostics 18/9/96, 5:21 pm199

ASSEMBLER DIAGNOSTICS

200

AA90–1

No Warning message Suggestion

6 Floating point division
by zero

7 Wrong usage of string The current implementation
operator ('#' or '##'); restricts use of the # and ##
ignored. operators to the token field of

parameterized macros. In
addition, the # operator must
precede a formal parameter.

8 Macro parameter(s) not
used

9 Macro redefined

10 Unknown macro

11 Empty macro argument

12 Recursive macro

13 Redefinition of Special The SFR has already been defined.
Function Register

14 Division by zero Division by 0 in constant
expression.

15 Constant truncated The constant was longer than the
size of the destination.

16 Suspicious sfr A Special Function Register SFR is
expression used in an expression, and the

assembler cannot check access
rights.

17 Empty module '<module An empty module was created by
name>', module skipped using END directly after ENDMOD or

MODULE, followed by ENDMOD with
no statements in between.

18 End of program while The program ended while a file
in include file was being included.

19 Symbol '<symb>'
duplicated

§19 Assembler diagnostics 18/9/96, 5:21 pm200

ASSEMBLER DIAGNOSTICS

201

AA90–1

No Warning message Suggestion

20 Bit symbol cannot be A symbol was declared using the
used as operand bit directive, but since the bit

address is not calculated the
symbol should not be used.

AT90S-SPECIFIC WARNING MESSAGES

The following table lists the AT90S-specific warning messages:

No Warning message Suggestion

400 SFR neither defined as
READ nor WRITE

401 More than one SFR size
attribute defined,
using default (byte)

402 No SFR size attribute
defined, using default
(byte)

§19 Assembler diagnostics 18/9/96, 5:21 pm201

ASSEMBLER DIAGNOSTICS

202

AA90–1§19 Assembler diagnostics 18/9/96, 5:21 pm202

203

AA90–1

XLINK DIAGNOSTICS
This chapter describes the errors and warnings produced by the XLINK
Linker.

INTRODUCTION The error messages produced by the XLINK Linker fall into five
categories:

◆ Linker warning messages.

◆ Linker error messages.

◆ Linker fatal error messages.

◆ Memory overflow message.

◆ Linker internal error messages.

XLINK WARNING MESSAGES

XLINK warning messages will appear when the linker detects
something that may be wrong. The code generated may still be correct.

XLINK ERROR MESSAGES

XLINK error messages are produced when the linker detects something
wrong. The linking process will not be aborted but the code produced
may be faulty.

XLINK FATAL ERRORS

XLINK fatal error messages abort the linking process. They occur when
continued linking is useless, ie the fault is irrecoverable.

§20 XLINK diagnostics 18/9/96, 5:21 pm203

XLINK DIAGNOSTICS

204

AA90–1

MEMORY OVERFLOW MESSAGE

XLINK is a memory-based linker. If run on a system with a small main
memory or if very large source files are being used, XLINK may run out
of memory. This is recognized by the following message:

* * * LINKER OUT OF MEMORY * * *

Dynamic memory used: nnnnnn bytes

If this occurs, the solution is either to add system memory, or to enable
file bound processing with the -m option. The -t option can also be
used to save memory.

XLINK INTERNAL ERRORS

During linking, a number of internal consistency checks are performed.
If any of these checks fail, the linker will terminate after giving a short
description of the problem. These errors will not normally occur, but if
they do please report them to the IAR Systems technical support group.
Please include all possible information about the problem and also a
disk with the program that generated the error.

ERROR MESSAGES If you get a message that indicates a corrupt object file, reassemble or
recompile the faulty file since an interrupted assembly or compilation
may produce an invalid object file.

The following table lists the XLINK error messages:

No Error message Suggestion

0 Format chosen cannot Format unable to support
support banking banking.

1 Corrupt file. Unexpected Linker aborts immediately.
end of file in module Recompile or reassemble, or
module (file) encountered check the compatibility between

the linker and C compiler.

2 Too many errors Linker aborts immediately.
encountered (>100)

§20 XLINK diagnostics 18/9/96, 5:22 pm204

XLINK DIAGNOSTICS

205

AA90–1

No Error message Suggestion

3 Corrupt file. Checksum Linker aborts immediately.
failed in module module Recompile or reassemble.
(file). Linker checksum
is linkcheck, module
checksum is modcheck

4 Corrupt file. Zero length Linker aborts immediately.
identifier encountered in Recompile or reassemble.
module module (file)

5 Address type for CPU Linker aborts immediately.
incorrect. Error Check that you are using the
encountered in module right files and libraries.
module (file)

6 Program module module XLINK will not produce code
declared twice, unless the -B option (forced
redeclaration in file dump) is used.
file. Ignoring second
module

7 Corrupt file. Unexpected Linker aborts immediately.
UBROF – format end of Recompile or reassemble.
file encountered in
module module (file)

8 Corrupt file. Unknown or Linker aborts immediately.
misplaced tag encountered Recompile or reassemble.
in module module (file).
Tag tag

9 Corrupt file. Module Linker aborts immediately.
module start unexpected Recompile or reassemble.
in file file

10 Corrupt file. Segment no. Linker aborts immediately.
segno declared twice in Recompile or reassemble.
module module (file)

11 Corrupt file. External no. Linker aborts immediately.
ext no declared twice in Recompile or reassemble.
module module (file)

§20 XLINK diagnostics 18/9/96, 5:22 pm205

XLINK DIAGNOSTICS

206

AA90–1

No Error message Suggestion

12 Unable to open file file Linker aborts immediately.
If you are using the command
line check the environment
variable XLINK_DFLTDIR.

13 Corrupt file. Error tag A UBROF error tag was
encountered in module encountered. Linker aborts
module (file) immediately. Recompile or

reassemble.

14 Corrupt file. Local Linker aborts immediately.
local defined twice in Recompile or reassemble.
module module (file)

15 Faulty bank definition Incorrect syntax. Linker aborts
-bbank def immediately.

16 Segment segment is too The segment defined does not fit
long for segment into the memory area reserved
definition for it. Linker aborts immediately.

17 Segment segment is Linker aborts immediately.
defined twice in segment
definition -Zsegdef

18 Range error in module The address is out of the CPU
module (file), segment address range. Locate the cause
segment at address of the problem using the
address. Value value, in information given in the error
tag tag, is out of bounds message.

The check can be suppressed by the -R option.

19 Corrupt file. Undefined Linker aborts immediately.
segment referenced in Recompile or reassemble.
module module (file)

20 Undefined external Linker aborts immediately.
referenced in module Recompile or reassemble.
module (file)

21 Segment segment in module The segment is too long. Linker
module does not fit bank aborts immediately.

§20 XLINK diagnostics 18/9/96, 5:22 pm206

XLINK DIAGNOSTICS

207

AA90–1

No Error message Suggestion

22 Paragraph no. is not Linker aborts immediately.
applicable for the wanted Delete the paragraph no.
CPU. Tag encountered in declaration in the .xcl file.
module module (file)

23 Corrupt file. T_REL_FI_8 The tag T_REL_FI_8 or
or T_EXT_FI_8 is corrupt T_EXT_FI_8 is faulty. Linker
in module module (file) aborts immediately. Recompile or

reassemble.

24 Segment segment overlaps The segments overlap each
segment segment other; ie both have code on the

same address.

25 Corrupt file. Unable to A module is missing. Linker
find module module (file) aborts immediately.

26 Segment segment is too This error should never occur
long unless the program is extremely

large. Linker aborts immediately.

27 Entry entry in module There are two or more entries
module (file) redefined with the same name. Linker
in module module (file) aborts immediately.

28 File file is too long The program is too large. Split
the file. Linker aborts
immediately.

29 No object file specified There is nothing to link. Linker
in command-line aborts immediately.

30 Option -option also Linker aborts immediately.
requires the -option
option

31 Option -option cannot be Linker aborts immediately.
combined with the
-option option

32 Option -option cannot be Linker aborts immediately.
combined with the -option
option and the -option
option

§20 XLINK diagnostics 18/9/96, 5:22 pm207

XLINK DIAGNOSTICS

208

AA90–1

No Error message Suggestion

33 Faulty value val (in Faulty page setting. Linker aborts
command line or in immediately.
XLINK_PAGE), (range is
10-150)

34 Filename too long The filename is more than 255
characters long. Linker aborts
immediately.

35 Unknown flag flag in Linker aborts immediately.
cross reference option
option

36 Option op does not exist Linker aborts immediately.

37 - not succeeded by The - marks the beginning of an
character option, and must be followed by

a character. Linker aborts
immediately.

38 Option option multiply Linker aborts immediately.
defined

39 Illegal character Linker aborts immediately.
specified in option op

40 Argument expected after This option must be succeeded
option op by an argument. Linker aborts

immediately.

41 Unexpected '-' in option Linker aborts immediately.
op

42 Faulty symbol definition Incorrect syntax. Linker aborts
-Dsymbol definition immediately.

43 Symbol in symbol The symbol name is more than
definition too long 255 characters. Linker aborts

immediately.

44 Faulty value val (in Faulty column setting. Linker
command line or in aborts immediately.
XLINK_COLUMNS), (range
80-300)

§20 XLINK diagnostics 18/9/96, 5:22 pm208

XLINK DIAGNOSTICS

209

AA90–1

No Error message Suggestion

45 Unknown CPU CPU Linker aborts immediately.
encountered in command Check the argument to -c is
line (or in XLINK_CPU) valid. If you are using the

command line you can get a list
of CPUs by typing xlink R.

46 Undefined external Entry to external is missing.
external referred in
module (file)

47 Unknown format format Linker aborts immediately.
encountered in command
line or XLINK_FORMAT

48 Faulty segment definition Incorrect syntax. Linker aborts
-Zsegdef immediately.

49 Segment name in segment 255 characters long. Linker
definition too long aborts immediately.

50 Paragraph no. not allowed Linker aborts immediately. Do
for this CPU, encountered not use paragraph no. in
in option option declarations.

51 Hexadecimal or decimal Linker aborts immediately.
value expected in option
option

52 Overflow on value in Linker aborts immediately.
option option

53 Parameter exceeded 255 Linker aborts immediately.
characters in extended
command line file file

54 Extended command line Linker aborts immediately.
file file is empty

55 Extended command line Linker aborts immediately.
variable XLINK_ENVPAR is
empty

56 Overlapping ranges in Linker aborts immediately.
segment definition
segment def

§20 XLINK diagnostics 18/9/96, 5:22 pm209

XLINK DIAGNOSTICS

210

AA90–1

No Error message Suggestion

57 No CPU defined No CPU defined, either in the
command line or in XLINK_CPU.
Linker aborts immediately.

58 No format defined No format defined, either in the
command line or in
XLINK_FORMAT. Linker aborts
immediately.

59 Linker aborts immediately.

If this error occurs after
recompilation or reassembly, the
wrong version of XLINK is being
used. Check with your supplier.

60 Segment segment defined Linker aborts immediately.
in bank definition and
segment definition.

61 Symbol in bank definition Linker aborts immediately.
is too long

62 File file multiply Linker aborts immediately.
defined in command line

63 Trying to pop an empty Linker aborts immediately.
stack in module module Recompile or reassemble.
(file)

64 Module module (file) has Linker aborts immediately.
not the same debug type
as the other modules

65 Faulty replacement Incorrect syntax. Linker aborts
definition -rreplacement immediately.
definition

66 Function with F-index Indirect call to an undefined in
index has not been module. Probably caused by an
defined before indirect omitted function declaration.
reference in module
module (file)

Revision no. for file is
incompatible with XLINK
revision no.

§20 XLINK diagnostics 18/9/96, 5:22 pm210

XLINK DIAGNOSTICS

211

AA90–1

No Error message Suggestion

67 Function name has same Probably a corrupt file.
F-index as function-name, Recompile file.
defined in module module
(file)

68 External function name If no other errors have been
in module module (file) encountered, this error is
has no global definition generated by an assembly

language call from C where the
required declaration using the
$DEFFN assembly language
support directive is missing. The
declaration is necessary to
inform the linker of the memory
requirements of the function.

69 Indirect or recursive The recursively or indirectly
function name in module called function name is using
module (file) has extended language memory
parameters or auto specifiers (bit, data, idata, etc)
variables in nondefault to point to non-default memory,
memory which is not allowed.

Function parameters to
indirectly called functions must
be in the default memory area
for the memory model in use,
and for recursive functions, both
local variables and parameters
must be in default memory.

70 Module module (file) has Only modules compiled under
not the same memory as the same memory model may be
previously linked modules linked together.

71 Segment name is This is usually due to misuse of a
incorrectly defined (in predefined segment; see the
a bank definition, has explanation of name in the
wrong segment type or AT90S C Compiler
mixed segment types) Programming Guide. It may be

caused by changing the
predefined linker control file.

§20 XLINK diagnostics 18/9/96, 5:22 pm211

XLINK DIAGNOSTICS

212

AA90–1

No Error message Suggestion

72 Segment name must be This is either an omission of a
defined in a -Z segment in the linker (usually a
definition segment needed by the C system

control) file or a spelling error
(segment names are case
sensitive).

73 Label ?ARG_MOVE not In the library there should be a
found (recursive module containing this label. If it
function need it) has been removed it must be

restored.

74 There was an error when Either the linker or your host
writing to file file system is corrupt, or the two are

incompatible.

75 SFR address in module An SFR has been defined to a bad
module (file), segment address. Change the definition.
segment at address
address, value value is
out of bounds

76 Absolute segments overlap The linker has found two or
in module module more absolute segments in

module overlapping each other.

77 Absolute segments in The linker has found two or
module module (file) more absolute segments in
overlaps absolute segment module (file) and module
in module module (file) (file) overlapping each other.

78 Absolute segment in The linker has found an absolute
module module (file) segment in module (file)
overlaps segment segment overlapping a relocatable

segment.

79 Faulty allocation The linker has discovered an
definition -adefinition error in an overlay control

definition.

80 Symbol in allocation A symbol in the -a command is
definition (-a) too long too long.

§20 XLINK diagnostics 18/9/96, 5:22 pm212

XLINK DIAGNOSTICS

213

AA90–1

No Error message Suggestion

81 Unknown flag in extended Check flags.
format option -Y

82 Conflict in segment These errors only occur with the
'name'. Mixing 8051 and converted PL/M code.
overlayable and not
overlayable segment
parts.

83 The overlayable segment These errors only occur with the
'name' may not be banked. 8051 and converted PL/M code.

84 The overlayable segment These errors only occur with the
'name' must be of 8051 and converted PL/M code.
relative type.

WARNING MESSAGES The following table lists the linker warning messages:

No Warning message Suggestion

0 Too many warnings Too many warnings
encountered.

1 Error tag encountered in A UBROF error tag was
module module (file) encountered when loading file

file. This indicates a corrupt
file and will generate an error in
the linking phase.

2 Symbol symbol is A symbol has been redefined.
redefined in command-line

3 Type conflict. Segment Segments of the same name
segment, in module should have the same type.
module, is incompatible
with earlier segment(s)
of the same name

§20 XLINK diagnostics 18/9/96, 5:22 pm213

XLINK DIAGNOSTICS

214

AA90–1

No Warning message Suggestion

4 Close/open conflict. Segments of the same name
Segment segment, in should be either open or closed.
module module, is
incompatible with earlier
segment of the same name

5 Segment segment cannot be The segments will not be
combined with previous combined.
segment

6 Type conflict for Entries and their corresponding
external/entry entry, in externals should have the same
module module, against type.
external/entry in module
module

7 Module module declared The program module is linked.
twice, once as program
and once as library.
Redeclared in file file,
ignoring library module

8 Segment segment Undefined segment exists. All
undefined in segment or segments should be defined in
bank definition either the segment or the bank

definition.

9 Ignoring redeclared Only the program entry found
program entry first is chosen.

10 No modules to link The linker has no modules to
link.

11 Module module declared The module found first is linked.
twice as library.
Redeclared in file file,
ignoring second module

12 Using SFB in banked The SFB assembler directive may
segment segment in not work in a banked segment.
module module (file)

§20 XLINK diagnostics 18/9/96, 5:22 pm214

XLINK DIAGNOSTICS

215

AA90–1

No Warning message Suggestion

13 Using SFE in banked The SFE assembler directive may
segment segment in module not work in a banked segment.
module (file)

14 Entry entry duplicated. Duplicated entries exist in
Module module (file) conditionally loaded modules; ie
loaded, module module library modules or conditionally
(file) discarded loaded program modules (with

the -C option).

15 Predefined type sizing The modules have been compiled
mismatch between modules with different options for
module (file) and module predefined types, such as
(file) different sizes of basic C types

(eg integer, double).

16 Function name in module The probable cause is that an
module (file) is called interrupt function calls another
from two function trees function that also could be
(with roots name1 and executed by a foreground
name2) program, and this could lead to

execution errors.

17 Segment name is too This error occurs if a given
large or placed at wrong segment overruns the available
address address space in the named

memory area. To find out the
extent of the overrun do a
dummy link, moving the start
address of the named segment to
the lowest address, and look at
the linker map file. Then relink
with the correct address
specification.

18 Segment segment overlaps The linker has found two
segment segment relocatable segments overlapping

each other. Check the -Z option
parameters.

§20 XLINK diagnostics 18/9/96, 5:22 pm215

XLINK DIAGNOSTICS

216

AA90–1

No Warning message Suggestion

19 Absolute segments The linker has found two or
overlaps in module more absolute segments in
module (file) module module overlapping each

other.

20 Absolute segment in The linker has found two or
module module (file) more absolute segments in
overlaps absolute module module (file) and
segment in module module module module (file)
(file) overlapping each other. Change

the ORG directives.

21 Absolute segment in The linker has found an absolute
module module (file) segment in module module
overlaps segment segment (file) overlapping a relocatable

segment. Change either the ORG
directive or the -Z relocation
command.

22 Interrupt function name Interrupt functions may not be
in module module (file) called.
is called from other
functions

§20 XLINK diagnostics 18/9/96, 5:22 pm216

217

AA90–1

XLIB DIAGNOSTICS
This chapter lists the messages produced by the XLIB Librarian.

XLIB MESSAGES The following table lists the XLIB messages. Commands flagged as
erroneous never alter object files.

No Error message Suggestion

1 Bad object file, EOF Bad or empty object file, which
encountered could be the result of an aborted

assembly or compilation.

2 Unexpected EOF in batch The last command in a command
file file must be EXIT.

3 Unable to open file file Could not open the command file
or, if ON-ERROR-EXIT has been
specified, this message is issued
on any failure to open a file.

4 Variable length record Bad object module, could be the
out of bounds result of an aborted assembly.

5 Missing or non-default A parameter was missing in the
parameter direct mode.

6 No such CPU A list with the possible choices is
displayed when this error is
found.

7 CPU undefined DEFINE-CPU must be issued
before object file operations can
begin. A list with the possible
choices is displayed when this
error is found.

8 Ambiguous CPU type A list with the possible choices is
displayed when this error is
found.

9 No such command Use the HELP command.

§21 XLIB diagnostics 18/9/96, 5:22 pm217

XLIB DIAGNOSTICS

218

AA90–1

No Error message Suggestion

10 Ambiguous command Use the HELP command.

11 Invalid parameter(s) Too many parameters or a
misspelled parameter.

12 Module out of sequence Bad object module, could be the
result of an aborted assembly.

13 Incompatible object, Bad object module, could be the
consult distributor! result of an aborted assembly, or

that the assembler/compiler
revision used is incompatible
with the version of XLIB used.

14 Unknown tag: hh Bad object module, could be the
result of an aborted assembly.

15 Too many errors More than 32 errors will make
XLIB abort.

16 Assembly/compilation The T_ERROR tag was found.
error? Edit and re-assemble/re-compile

your program.

17 Bad CRC, hhhh expected Bad object module; could be the
result of an aborted assembly.

18 Can't find module: xxxxx Check the available modules
with LIST-MOD file.

19 Module expression out of Module expression is less than
range one or greater than $.

20 Bad syntax in module The syntax is invalid.
expression: xxxxx

21 Illegal insert sequence The specified destination in
the INSERT-MODULES command
must not be within the start-
end sequence.

22 <End module> found before Source module range must be
<Start module>! from low to high order.

23 Before or after! Bad BEFORE/AFTER specifier in
the INSERT-MODULES command.

§21 XLIB diagnostics 18/9/96, 5:22 pm218

XLIB DIAGNOSTICS

219

AA90–1

No Error message Suggestion

24 Corrupt file, error A fault is detected in the object
occurred in tag file tag. Reassembly or

recompilation may help.
Otherwise contact your supplier.

25 File is write protected The file file is write protected
and cannot be written to.

26 Non-matching replacement In the source file, a module name
module name found in with no corresponding entry in
source file the destination file was found.

§21 XLIB diagnostics 18/9/96, 5:22 pm219

XLIB DIAGNOSTICS

220

AA90–1§21 XLIB diagnostics 18/9/96, 5:22 pm220

INDEX

221

AA90–1

assembler directives (continued)
LSTOUT 110
LSTPAG 110
LSTREP 110
LSTXRF 110
MACRO 103
MODULE 88, 168
NAME 88, 168
ORG 91
PAGE 110
PAGSIZ 110
PROGRAM 88
PUBLIC 90
RADIX 120
REPT 103
REPTC 103
REPTI 103
RSEG 91
sfrb 96
SFRTYPE 96
sfrw 96
STACK 91
VAR 96

assembler mnemonics 125
assembler operator

precedence 61
summary 61

assembler operators
! 74
!= 74
% 74
& 68
&& 68
* 66
+ 66
- 67
/ 67
< 73
<< 76
<= 72
<> 74

assembler directives (continued)
#undef 115
$ 120
/* 120
// 120
= 96
ALIAS 96
ALIGN 91
ASEG 91
ASSIGN 96
CASEOFF 120
CASEON 120
COL 110
COMMON 91
DB 119
DD 119
DEFINE 96
DP 119
DS 119
DW 119
ELSE 101
ELSEIF 101
END 88
ENDIF 101
ENDM 103
ENDMOD 88
ENDR 103
EQU 96
EVEN 91
EXITM 103
EXPORT 90
EXTERN 90
IF 101
IMPORT 90
LIBRARY 88
LIMIT 96
LOCAL 103
LSTCND 110
LSTCOD 110
LSTEXP 110
LSTMAC 110

A
absolute segments, beginning 92
address field, in listing 58
ALIAS (assembler directive) 96
ALIGN (assembler directive) 91
AND (assembler operator) 68
ASCII character constants 54
ASEG (assembler directive) 91
assembler

expressions 51
features 5
labels 53
listing format 17, 57
operator format 65
operators 51
output formats 59
source format 51
symbols 53

assembler diagnostics 189
command line errors 190
error messages 190, 191
fatal errors 190
internal errors 191
memory overflow 190
warning messages 190, 199

assembler directive syntax
comments 87
conventions 86
labels 87
parameters 87

assembler directives
#define 115
#elif 115
#else 115
#endif 115
#error 115
#if 115
#ifdef 115
#ifndef 115
#include 115

INDEX

§22 Index 18/9/96, 5:22 pm221

INDEX

222

AA90–1

C
C preprocessor directives 115
C-SPY

running 3
using 9, 25

case sensitivity, controlling 121
CASEOFF (assembler directive) 120
CASEON (assembler directive) 120
character constants 54
CODE (segment type) 160
code generation options 35
COL (assembler directive) 110
command line errors 190
command line options 48
command line options (XLINK) 153
comments, in assembler directives 87
COMMON (assembler directive) 91
COMMON (segment type) 159
common segments, beginning 93
COMPACT-FILE (XLIB

command) 173
conventions v

D
DATA (segment type) 160
data definition or allocation

directives 119
data field, in listing 58
DATE (assembler operator) 70
DB (assembler directive) 119
DD (assembler directive) 119
decimal numbers 54
DEF-CPU (XLIB command) 30
DEFINE (assembler directive) 96
#define options 39
DEFINE-CPU (XLIB command) 173
defining macros 104

assembler options
-B 43
-b 38
-c 43
-D 39
-d 36
-E 48
-f 48
-G 48
-I 45
-i 42
-L 42
-l 41
-M 36
-N 42
-O 49
-o 49
-p 44
-r 38
-S 49
-s 36
-T 42
-t 44
-U 44
-v 47
-w 37
-X 43

ASSIGN (assembler directive) 96
assumptions v

B
binary numbers 54
BIT (segment type) 160
BITAND (assembler operator) 68
BITNOT (assembler operator) 68
BITOR (assembler operator) 69
BITXOR (assembler operator) 69
BYTE2 (assembler operator) 69
BYTE3 (assembler operator) 70

assembler operators (continued)
= 71
== 71
> 71
>= 71
>> 77
^ 69
| 69
|| 75
~ 68
AND 68
BITAND 68
BITNOT 68
BITOR 69
BITXOR 69
BYTE2 69
BYTE3 70
DATE 70
EQ 71
GE 71
GT 71
HIGH 72
HWRD 72
LE 72
LOW 73
LT 73
LWRD 73
MOD 74
NE 74
NOT 74
OR 75
SFB 75
SFE 76
SHL 76
SHR 77
SIZEOF 77
UGT 78
ULT 78
XOR 78

assembler option summary 31, 79

§22 Index 18/9/96, 5:22 pm222

INDEX

223

AA90–1

EXTERN (assembler directive) 90

F
false value 52
FAR (segment type) 160
FARC (segment type) 160
FARCONST (segment type) 160
features

assembler 5
XLIB Librarian 7
XLINK Linker 6

FETCH-MODULES (XLIB
command) 30, 176

G
GE (assembler operator) 71
global value, defining 98
GT (assembler operator) 71

H
HELP (XLIB command) 176
hexadecimal numbers 53
HIGH (assembler operator) 72
HUGE (segment type) 160
HUGEC (segment type) 160
HUGECODE (segment type) 160
HUGECONST (segment type) 160
HWRD (assembler operator) 72

I
IF (assembler directive) 101
IMPORT (assembler directive) 90
in-line coding using macros 107
include options 45
include options (XLINK) 150

DELETE-MODULES (XLIB
command) 174

diagnostics
assembler 189
XLIB 217
XLINK 203

DIRECTORY (XLIB command) 174
DISPLAY-OPTIONS (XLIB

command) 175
documentation route map 4
DP (assembler directive) 119
DS (assembler directive) 119
DW (assembler directive) 119

E
ECHO-INPUT (XLIB command) 175
ELSE (assembler directive) 101
ELSEIF (assembler directive) 101
Embedded Workbench

installing 2, 3
running 2

END (assembler directive) 88
ENDIF (assembler directive) 101
ENDM (assembler directive) 103
ENDMOD (assembler directive) 88
ENDR (assembler directive) 103
entry list, linker 137
EQ (assembler operator) 71
EQU (assembler directive) 96
error messages

assembler 191
XLIB 217
XLINK 203

error options (XLINK) 146
errors, displaying 117
EVEN (assembler directive) 91
EXIT (XLIB command) 30, 176
EXITM (assembler directive) 103
EXPORT (assembler directive) 90
expressions, in assembler 51

Inherent (XLINK option) 151
input options (XLINK) 151
INSERT-MODULES (XLIB

command) 177
installation, requirements 1
instruction mnemonics 125
integer constants 53

L
labels

defining and undefining 116
in assembler 53
in assembler directives 87

LE (assembler operator) 72
librarian

command summary 169
error messages 217
introduction 167
using 29

librarian commands. See XLIB
commands

libraries 132, 167
using 25
using with assembler

programs 168
using with C programs 167

LIBRARY (assembler directive) 88
library modules, beginning 89
library routines, creating 26
LIMIT (assembler directive) 96
linker

error messages 203
input files and modules 131
introduction 129
libraries 130
listing format 134
object format 129, 132
output formats 59, 130, 163
warning messages 213

linker options. See XLINK options

§22 Index 18/9/96, 5:22 pm223

INDEX

224

AA90–1

linking 23
list options 40
list options (XLINK) 148
LIST-ALL-SYMBOLS (XLIB

command) 178
LIST-CRC (XLIB command) 179
LIST-DATE-STAMPS (XLIB

command) 179
LIST-ENTRIES (XLIB

command) 180
LIST-EXTERNALS (XLIB

command) 180
LIST-MODULES (XLIB

command) 30, 181
LIST-OBJECT-CODE (XLIB

command) 182
LIST-SEGMENTS (XLIB

command) 182
listings

address and data fields 58
assembler 57
conditional code and strings 111
cross reference table 112
formatting 112
generated lines 112
macros 112
source line 58
source line number 58
turning on and off 111

LOCAL (assembler directive) 103
local symbols, using 100
local value, defining 97
location counter 53

setting 93
LOW (assembler operator) 73
LSTCND (assembler directive) 110
LSTCOD (assembler directive) 110
LSTEXP (assembler directive) 110
LSTMAC (assembler directive) 110
LSTOUT (assembler directive) 110
LSTPAG (assembler directive) 110

LSTREP (assembler directive) 110
LSTXRF (assembler directive) 110
LT (assembler operator) 73
LWRD (assembler operator) 73

M
MACRO (assembler directive) 103
macro processing directives 103
macro-generated lines 23
macros

defining 104
processing 106
using special characters 105

MAKE-LIBRARY (XLIB
command) 183

MAKE-PROGRAM (XLIB
command) 183

memory overflow error 190
mnemonics, assembler 125
MOD (assembler operator) 74
MODULE (assembler

directive) 88, 168
module map, linker 137
modules

terminating 89
using 25

N
NAME (assembler directive) 88, 168
NE (assembler operator) 74
NEAR (segment type) 160
NEARC (segment type) 160
NEARCONST (segment type) 160
NOT (assembler operator) 74
NPAGE (segment type) 160
numbers

binary 54
decimal 54

numbers (continued)
hexadecimal 53
octal 54

O
octal numbers 54
ON-ERROR-EXIT (XLIB

command) 184
operators, in assembler 51
options, assembler 31, 79
OR (assembler operator) 75
ORG (assembler directive) 91
output formats, assembler 59
output formats, XLINK 163

variants 166
output options (XLINK) 143

P
PAGE (assembler directive) 110
PAGSIZ (assembler directive) 110
PATH variable 1
pre-defined symbols

__DATE__ 55
__FILE__ 55
__IAR_SYSTEMS_ASM 55
__LINE__ 55
__TID__ 55

PROGRAM (assembler directive) 88
program modules, beginning 88
PROMable code, generating 25
PUBLIC (assembler directive) 90

Q
QUIT (XLIB command) 184

§22 Index 18/9/96, 5:22 pm224

INDEX

225

AA90–1

R
RADIX (assembler directive) 120
RELATIVE (segment type) 159
relocatable expressions, using

symbols in 52
relocatable segments, beginning 93
REMARK (XLIB command) 184
RENAME-ENTRY (XLIB

command) 185
RENAME-EXTERNAL (XLIB

command) 185
RENAME-GLOBAL (XLIB

command) 186
RENAME-MODULE (XLIB

command) 186
RENAME-SEGMENT (XLIB

command) 187
repeating statements 106
REPLACE-MODULES (XLIB

command) 187
REPT (assembler directive) 103
REPTC (assembler directive) 103
REPTI (assembler directive) 103
requirements 1
route map 4
RSEG (assembler directive) 91
running

a program 24
C-SPY 3
Embedded Workbench 2

S
segment control directives 91
segment control options (XLINK) 156
segment location 133
segment map, linker 135
segment types

BIT 160
CODE 160

segment types (continued)
COMMON 159
DATA 160
FAR 160
FARC 160
FARCONST 160
HUGE 160
HUGEC 160
HUGECODE 160
HUGECONST 160
NEAR 160
NEARC 160
NEARCONST 160
NPAGE 160
RELATIVE 159
STACK 159
UNTYPED 160
ZPAGE 160

SFB (assembler operator) 75
SFE (assembler operator) 76
sfrb (assembler directive) 96
SFRTYPE (assembler directive) 96
sfrw (assembler directive) 96
SHL (assembler operator) 76
SHR (assembler operator) 77
SIZEOF (assembler operator) 77
source files, including 117, 122
source format, assembler 51
source line, in listing 58
source line number, in listing 58
STACK (assembler directive) 91
STACK (segment type) 159
stack segments, beginning 93
symbol and cross reference table 58
symbols

exporting to other modules 90
importing 91
in assembler 53
in relocatable expressions 52
pre-defined 55
redefining 98

T
target options 46
temporary value, defining 97
true value 52
tutorial 9
tutorial programs

dio 21
first 12
main 26
shifts 27

U
UGT (assembler operator) 78
ULT (assembler operator) 78
UNTYPED (segment type) 160

V
value asignment directives 96
VAR (assembler directive) 96

W
warning messages, XLINK 213
Workbench

installing 3
running 2

X
XLIB commands 171

COMPACT-FILE 173
DEFINE-CPU 30, 173
DELETE-MODULES 174
DIRECTORY 174
DISPLAY-OPTIONS 175
ECHO-INPUT 175

§22 Index 18/9/96, 5:22 pm225

INDEX

226

AA90–1

XLIB commands (continued)
EXIT 30, 176
FETCH-MODULES 30, 176
HELP 176
INSERT-MODULES 177
LIST-ALL-SYMBOLS 178
LIST-CRC 179
LIST-DATE-STAMPS 179
LIST-ENTRIES 180
LIST-EXTERNALS 180
LIST-MODULES 30, 181
LIST-OBJECT-CODE 182
LIST-SEGMENTS 182
MAKE-LIBRARY 183
MAKE-PROGRAM 183
ON-ERROR-EXIT 184
QUIT 184
REMARK 184
RENAME-ENTRY 185
RENAME-EXTERNAL 185
RENAME-GLOBAL 186
RENAME-MODULE 186
RENAME-SEGMENT 187
REPLACE-MODULES 187

XLIB Librarian
command summary 169
error messages 217
introduction 167
using 29

XLIB Librarian, features 7
XLINK 143
XLINK Linker

error messages 203
features 6
functions 130
input files and modules 131
introduction 129
libraries 130, 132
listing format 134
object format 129, 132
output formats 59, 130, 163

XLINK Linker (continued)
warning messages 213

XLINK options
-! 154
-A 152
-B 146
-b 156
-C 154
-c 154
-D 145
-d 155
-E 152
-e 155
-F 144
-f 150
-G 147
-l 148, 150
-m 155
-n 155
-o 144
-p 149
-R 147
-r 144
-S 156
-t 156
-w 147
-x 135, 137, 149
-Y 145
-Z 158
-z 147

XOR (assembler operator) 78

Z
ZPAGE (segment type) 160

SYMBOLS

! (assembler operator) 74
!= (assembler operator) 74

#define (assembler directive) 115
#define options (XLINK) 145
#elif (assembler directive) 115
#else (assembler directive) 115
#endif (assembler directive) 115
#error (assembler directive) 115
#if (assembler directive) 115
#ifdef (assembler directive) 115
#ifndef (assembler directive) 115
#include (assembler directive) 115
#undef (assembler directive) 115
#undef options 44
$ (assembler directive) 120
$ (location counter) 53
% (assembler operator) 74
& (assembler operator) 68
&& (assembler operator) 68
* (assembler operator) 66
+ (assembler operator) 66
- (assembler operator) 67
-! (XLINK option) 154
-A (XLINK option) 152
-B (assembler option) 43
-b (assembler option) 38
-B (XLINK option) 146
-b (XLINK option) 156
-c (assembler option) 43
-C (XLINK option) 154
-c (XLINK option) 154
-D (assembler option) 39
-d (assembler option) 36
-D (XLINK option) 145
-d (XLINK option) 155
-E (assembler option) 48
-E (XLINK option) 152
-e (XLINK option) 155
-f (assembler option) 48
-F (XLINK option) 144
-f (XLINK option) 150
-G (assembler option) 48
-G (XLINK option) 147

§22 Index 18/9/96, 5:22 pm226

INDEX

227

AA90–1

-I (assembler option) 45
-i (assembler option) 42
-L (assembler option) 42
-l (assembler option) 41
-l (XLINK option) 148, 150
-M (assembler option) 36
-m (XLINK option) 155
-N (assembler option) 42
-n (XLINK option) 155
-O (assembler option) 49
-o (assembler option) 49
-o (XLINK option) 144
-p (assembler option) 44
-p (XLINK option) 149
-r (assembler option) 38
-R (XLINK option) 147
-r (XLINK option) 144
-S (assembler option) 49
-s (assembler option) 36

-S (XLINK option) 156
-T (assembler option) 42
-t (assembler option) 44
-t (XLINK option) 156
-U (assembler option) 44
-v (assembler option) 47
-w (assembler option) 37
-w (XLINK option) 147
-X (assembler option) 43
-x (XLINK option) 135, 137, 149
-Y (XLINK option) 145
-Z (XLINK option) 158
-z (XLINK option) 147
/ (assembler operator) 67
/* (assembler directive) 120
// (assembler directive) 120
< (assembler operator) 73
<< (assembler operator) 76

<= (assembler operator) 72
<> (assembler operator) 74
= (assembler directive) 96
= (assembler operator) 71
== (assembler operator) 71
> (assembler operator) 71
>= (assembler operator) 71
>> (assembler operator) 77
^ (assembler operator) 69
__DATE__ (pre-defined symbol) 55
__FILE__ (pre-defined symbol) 55
__IAR_SYSTEMS_ASM

(pre-defined symbol) 55
__LINE__ (pre-defined symbol) 55
__TID__ (pre-defined symbol) 55
| (assembler operator) 69
|| (assembler operator) 75
~ (assembler operator) 68

§22 Index 18/9/96, 5:22 pm227

INDEX

228

AA90–1§22 Index 18/9/96, 5:22 pm228

