
Documentation RASM v0.40 (c) Édouard BERGÉ 2017

RASM
roudoudou Assembler

v0.38

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

« Copyright © BERGÉ Édouard (roudoudou)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation/source files of RASM, to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software. The Software is provided "as is", without warranty of any
kind, express or implied, including but not limited to the warranties of merchantability, fitness
for a particular purpose and noninfringement. In no event shall the authors or copyright holders
be liable for any claim, damages or other liability, whether in an action of contract, tort or
otherwise, arising from, out of or in connection with the software or the use or other dealings in
the Software. »

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

1. Introduction

18 years ago, I programmed an assembler/disassembler called Zasm/dizasm. In
fact it was mainly a proof of concept of a mono-pass assembler. I used a little the
disassembler with personnal projects. Sources were published but the spread was so
confidential that it was hard to retrieve them back on my HDD.

Since then, another assembler called Zasm exists, created by a spectrum
developper team.

As the code of Rasm is from scratch (except a few concept), it's the pretext to
choose a new name: Rasm.

2. Installation

Rasm a stand-alone executable, there is no installation.

3. Compilation

Linux compilation:

cc rasm_v038.c -lm -lrt
mv a.out rasm
strip rasm

Windows compilation:

cl.exe rasm_v038.c -DOS_WIN -Ox

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

4. Rasm behaviour

Rasm is supposed to be easy to use. It will set default filename, guess what
memory region to save or create a cartridge file is ROM bank were selected during
assembly.

Rasm allow multiple ORG in the same memory set but it will not allow to write
twice the same adress in the same memory set. Each ORG, Rasm check there is no
overwrite.

If you need to generate many code portion at the same adress, you have two
possibilities. Either you use the <output> parameter of ORG directive (to choose another
output adress), or you may create another memory set using directive WRITE DIRECT
-1,-1,#C0

When you select ROM with directives BANK or WRITE DIRECT, this is always
the same memory set for each ROM. If you need another memory set, do not use ROM.

When using SAVE directive, Rasm disable automatic binary output to file or
cartridge. You may want to force CPR writing with directive BUILDCPR.

When possible, Rasm try to display comprehensive error messages to point out the
problem.

Rasm is using a pre-processor to normalize code, remove useless spaces,
comment, check quotes and legal characters, and finally transform some instructions
into others. As an example, XOR,AND,OR,MOD will be converted in a single char like
C syntax.

When a read file directive do not refer to an absolute path, le root path is the one
from the current file.

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

5. Using command line

-i <file to assemble> this is the only mandatory option.

-s export symbols to Rasm format
-sp export symbols to Pasmo format
-sw export symbols to Winape format

-sl additionnal option to the three previous one. It exports also local symbols

– Arnold emulator can handle any export format
– Winape cannot handle label of hiw own format when they are too long. The

debuger will crash.

-l <label file> import symbols before assembling

-v verbose mode

-m maxam calculation style

-o <output prefix> set the base name for default output files (binary, cartridge,
symbols). The default value is “rasmoutput”.

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

6. Code source format

6.1 generalities

Assembleur is not COBOL, it is useless to indent sources with Rasm, except to be
pretty. You may use two points to separete labels, or not. Rasm try to be free style. The
direct consequence of this free writing style involves a difference with the assemblers of
obsolete design. It is not possible (fortunately) to create a label that has the same name
as a directive or Z80 instruction.

Files may be read to Unix or Windows format, an internal conversion is done.

Rasm is not case sensible. All chars will be converted upper case. Don't be
surprise when Rasm display error messages.

6.2 Comments

Rasm comment starts with semicolon. All chars are ignored until next carriage
return.

There is no multiline comment.

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

6.3 Literal values

Rasm knows the following literals:
– In decimal if the value begin with a digit.
– In binary if the value begin with a %.
– In hexadecimal if the value begin with a #.
– An ascii value if a single character is between quote.
– An internal value (variable or label) if the literal begin with a letter or an '@' for

local labels.

Rasm does all its internal calculations in double floating-point precision. A correct
rounding is performed at the end of the calculation chain for the integer needs.

Caution, the & character is reserved for the AND operator.

6.4 Autorhized characters

Between quotations, all characters are allowed, at your own risk, for ASCII
conversion to Amstrad. outside quotes, you can use all letters, all digits, point, arobas,
parentheses, dollar, plus, minus, multiplied, divided, pipe, circumflex, percent, sharp, the
paragraph, the rafters and the two types of quotes.

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

6.5 Files
6.6 Labels

Inside a loop (REPEAT / WHILE) it is possible to use local labels in the same way
as with the integrated Winape assembler prefixing the label with the character '@'.

For each loop iteration, for each loop nesting, a suffix is added to the local label
containing the hexadecimal value of the internal repetition counter. It is thus possible to
call a local label to a repetition outside the loop, but this use is not advised.

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

7. Expressions

Rasm use a simple expression engine how can handle the following
operators/functions:

– * multiplication
– / division
– + addition
– - substraction
– & boolean operator AND
– | boolean operator OR
– ^ boolean operator OR exclusive
– § modulo
– AND, OR, XOR, MOD inline maxam style
– sin() sinus
– cos() cosinus
– asin() arc-sinus
– acos() arc-cosinus
– atan() arc-tangente
– int() double to int conversion
– abs() absolute value
– ln() natural logarithm
– log10() logarithm base 10
– exp() exponential
– sqrt() square root

Comparison operators:
– == equality (only one = in maxam compatibility mode)
– != different from
– <= less than or equal to
– >= greater than or equal to
– < less than
– > greater than

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

8. Variables

Rasm may use an unlimited number of variable for internal calculations.

Syntax: mavariable=5 or LET mavariable=5

Thoses variables may be used as loop counter, offset or value in a loop or the main
code.

Example:
dep=0
repeat 16
ld (ix+dep),a
dep=dep+8
rend

ang=0
repeat 256
defb 127*sin(ang)
ang=ang+360/256
rend

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

9. Directives

9.1 ALIGN <boundary>

Align code to a given boundary

Examples:
ALIGN 2 to align to even adress
ALIGN 256 to align to the high byte adress

9.2 AMSDOS

Add an Amsdos header to the automatic binary file. Note: There is no Amsdos
header added with SAVE directive.

9.3 BUILDCPR

Force cartridge output when using SAVE directive.

9.4 BANK <rom number>

Select a ROM for assembling. Even if a ROM size is 16K, you can start to write
anywhere in the ROM. Rasm will use the first outputed byte as start adress when
creating CPR file. ROM number range is from 0 to 31.

Note: When selecting twice the same ROM, a new memory space is created. If
you want to create a CPR file, only the first BANK <n> will be used for each ROM.

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

9.5 IF, IFNOT, ELSE, ENDIF

Conditionnal assembly

Example:
CODE_PRODUCTION=1
[...]
IF CODE_PRODUCTION
OR #80
ELSE
PRINT 'Test version'
ENDIF

9.6 LZ48 / LZ49

Open a LZ48/LZ49 crunched code part. The output code will be crunched after
assembly and following code will be relocated.

It's not possible to call a label located after the crunched code, from the crunched
code as we cannot know how big will be the crunched code. There will be an error if you
try so.

Limitations:
– It's not possible to assemble a code bigger than 64ko before crunch.
– It's not possible to embed portions of crunched code.

9.7 LZCLOSE

Close a crunched part opened with LZ48 or LZ49

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

9.8 READ / INCLUDE 'file to read'

Read a text file and include it into the current source code. Relative path starts
from the absolute location of the current file. An absolute path do not care about this.

There is not recursion limit. Be aware of what you do.

9.9 INCBIN 'file to read'[,offset[,size[,extended offset]]]

Include a binary file. Read data will be directly outputed. Parameters are like
Winape syntax except first offset is not limited to 64K. Extended offset is here for
compatibility only.

9.10 INCL48 / INCL49 'file to read'

Read a binary file, crunch it with LZ48 or LZ49 and directly output in the
memory.

9.11 LIMIT <maximum adress>

Set a lower limit (other than 64K) for outputed code. If you want to protect a
zone, you may use PROTECT directive.

9.12 ORG <code adress>[,<output adress>]

Assemble at a given adress. You may set an output adress to generate the code at a
different memory adress.

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

9.13 PROTECT <start adress>,<end adress>

Protect memory region in the current memory set. Any write to this region will
trigger an error and a message.

9.14 STOP

Stop assembling.

9.15 PRINT

Write text/variables during assembling.

9.16 NOLIST / LET / RUN <adress> / BRK

Directives are ignored, only for compatibility with Winape.

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

9.17 WHILE / WEND
9.18 REPEAT / UNTIL / REND

@TODO

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

9.19 WRITE DIRECT <lower rom>,<upper rom>,<RAM>

If you set a ROM number (lower from 0 to 7, upper from 0 to 31), the directive
will have the very same effect as BANK directive.

If you set the RAM (disabling ROM with -1 both lower and upper ROM), Rasm
create a new memory set for assembling. Using multiple WRITE DIRECT you can
assemble many code at the same adress, but different memory sets.

Example:
;default memory space, ORG at zero
defs 65536,0
WRITE DIRECT -1,-1,#C0
defs 65536,0
; new memory space, no matter the RAM bank
; in this example twice #C0
WRITE DIRECT -1,-1,#C0
; no error since it's a third memory space
defs 65536,0

Rasm created three memory spaces. The default memory space and two
additionnal set for each WRITE DIRECT call. There is no limit for memory space,
except your system memory.

When a new memory space is creaeted, you cannot get back to any previous one.

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

9.20 SAVE 'binary file to write',<adress>,<size>

Write a binary file starting from adress of the current memory set to adress+size.
Note that the saves are done only if there is no error at the end of assembly.

9.21 CHARSET 'string',<value> | <byte>,<value> |
<start>,<end>,<value>

Allows the value of characters or characters in strings to be assigned alternative
values. There are 4 forms of this directive.

– 'string',<value> First character of the string will have a new ascii <value>. Next
char will have <value>+1 etc. until the end of the string.

– <byte>,<value> set a new <value> for the character <byte>
– <start>,<end>,<value> Set from the character <start> until <end> an incremental

value starting from <value>.
– “no parameter” will set default values to all characters.

This directive is compatible with Winape.

9.22 MACRO / MEND

See macro chapter.

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

10. Macros

Rasm handle macros with curly brackets (Winape compatible). It is possible to do
conditionnal assembling inside macros because each macro call insert a brand new code
with new substitutions of parameters. Then the code is interpreted like if there were no
macro.

Example for a long distance LD (IX+offset),register write:

macro LDIXREG register,dep
if {dep}<-128

push bc
ld bc,{dep}
add ix,bc
ld (ix+0),{register}
pop bc

else
if {dep}>128

push bc
ld bc,{dep}
add ix,bc
ld (ix+0),{register}
pop bc

else
ld (ix+{dep}),{register}

endif
endif
mend

Documentation RASM v0.40 (c) Édouard BERGÉ 2017

11. Instructions

All documented and undocumented instructions are supported.

Index registers IX and IY 8-bits form may be used with ixl, lx ou xl, etc.

Complex instructions syntax:
res 0,(ix+0),a
bit 0,(ix+0),a
sll 0,(ix+0),a
rl 0,(ix+0),a
rr 0,(ix+0),a

Input/Output undocumented instructions syntax:
out (<n>),a ; <n> is a 8 bits value
in a,(<n>)
in 0,(c) or in f,(c)

12. Limitations

– It's not possible to use instruction or directive as label.
– Crunched section cannot exceed 64K before crunch.

