
' Z8O Assembly
Programming Package

Feâtures:

C omprehensive Text Editor

Singt. eus nign Speed Assembler

Single and Multi Step Monitor ûth
Breakpoin6

S ymbolic Disassembter

Hex Memory Editor

Fih Mrnag.r

f$r''' - rrr:rii:.'.l${l.]i{wlF.

The Complete Machine Code Development Pie Machine Code Development Package
For The Amstrad CPC 464

ZILPP

ZE(l Assenbly ProEamming Package

fortheAmstrad CPC464

@ Hewson Consultants Ltd. 1985

i

ZAPP

280 Assembly Programming Package

Now you can develop professional quality machine code
software on your Amstrad CPC464 using this fast and
versatile assembly language programming package.

Features include:
* Editor - create, rearrange and modify your source

code mnemonics quickly and easily using the comprehen-
sive text editor.

* Assembler - all the usual assembler facilities plus
temporary labels, some arithmetic operators and limited
forward reference all at a single pass for high speed opera-
tion.

* Monitor - complete "front panel" controls plus
single and multiple stepping and breakpoints.

* Disassembler - symbolic disassembly with external
labels for full analysis of unknown object code.

* Hex Editor - hex and ASCII line-byJine dump with
edit facilities.

* File Manager - full file handling facilities including
append source file and assembly from file.

ZAPP was wdtten by Keith Prosser of Hewson Con-
sultants who are leading experts on the use of the 280
microprocessor in home computer systems and publishers
of many programs for the Amstrad CPC464 and the
Spectrum Plus.

USER MANUAL
Version 0.2

PREFACE

ZAPP is designed to help you get your assembly language
programs working. In addition to containing facilities to
creatc, edit and assemble source programs. ZAPP has a
powerful monitor with disassembler, single-stepping and
'ft ont-panel' capability.

As with all powerful software tools it will take you
some time to master all the facilitieswhich ZAPP provides.
To help you learn these facilities as quickly as possible this
manual is divided into thre€ sectiors.

Section A gives an overview of Z,APP, showing you
how to enter, assemble and execute a short program and
how to save the source and the obiect code. The section is
designed 10 be a simple, readable account and should be
read by beginners and experienced usen alike.

Secdon B is the main description of ZAPP. In rhis
section all the faciliti€s of the program are deliled and
described in detail. Beginners should read this seclion care-
fully but experienced users may prefer to skim through it
before r€ading seclion C.

Section C d€Ii.es all the special words used in ZAPP
and lists a summary of all commands. Most users will wish
to keep the manual open at this section wh€n working on
the computer.

STOP PRESS!

DISC USERS

ZAPP will now mn on the DDI-1 disc drive, the file
handling commands being automatically re-directed to the
disc.

Command Effect
Itape Turn on thetape system.

RUN" Irad and run ZAPPfromtaPe.
*bye Retum to Basic.

ldisc Turnonthe discsystem.

SAVE'ZAPP" Save ZAPP boolstrap Program on disc.

SAVE "ZAPPc",
b,32315, 10200 Save ZAPP main program on disc.

Disc users have the following additional command at their
disposal
*ela f
This command erases file f from disc.

CONTENTS

Sectlon A

SYSTEM OVERYIEW

1.1 BackgroundMaterial
1.2 Getting Started
1.3 Using the Editor
1.4 Makiûg Changes
1.5 Using the Ass€mbler
1.6 Using the Monitor
1.7 Saving Source Prograrns and Assembled Code

Sectlon B

MAIN DESCRIPTION

1.0 STARTING UP

2.0 EDITING THE SOURCE FILE
2.1 The Autolister
2.2 Inserting Lines
2.3 Changing the Current Line
2.4 Editor Commands

3.0 THE ASSEMBLER
3.1 ltstruction Format
3.2 Directives
3.3 Numbers
3.4 Symbols

3.4.1 Forward References
3.4.2 Permanent Symbols
3.4.3 Temporary Symbols

3.5 Operators and Offsets
3.6 Listings
3.7 End Report

3,8 Errors
3.8.1 Error Codes
3.8.2 Chaining Errors

3.9 Direct Assembly (Command.dlr)
3.10 Assembly From File

(Commands rasf, .asf* and directive lllc)
3.11 Remote Assembly

4.0 THE MONITOR
4.1 Display Format
4.2 Monitor Commands
4.3 Performing Instructions
4.4 Modifying Registers
4.5 Breakpoints
4.6 Monitor Messages

5.0 THE DISASSEMBLER
6.0 THE HEX MEMORY EDITOR
7,0 FILE MANAGEMENT

7.1 l-oading/Appending Source Programs
7.2 Saving Source Programs
?.3 Saving Assembled Code
7.4 Loading Code

Sedlon C
REFERENCE SECTION

I.O DEFINITIONS

2.0 'i'" COMMAND SUMMARY
3.0 EDITING COMMANDS

4,0 ASSEMBLER DIRECTIVES

5.0 ERROR CODES

6.0 MONITOR COMMANDS

SECTION A

SYSTEMOVERVIEW

1.l Background Material
It is assumed that you know a little about 280 assembly
language. If you know nothing at all about it, then you'll
need a book to teach you, although ZAPP is the perfect
system for lealning on. There are several books available.

. The standard reference is "How to Program the 280"
by Rodnay Zaks, published by Sybex and available through
Radio Shack (i.e. Tandy Stores), ISBN No. 0-89588-057-1.
It contains a great deal of information about the hardware
organisation of the microprocessor as well as listing full
details of the instruction set. The beginner might find it
rather formidable because it runs to more than 600 pages.

A rather more readable account is contained in "280
and 8080 Assembly Language Programming" by Kathe
Spracklen, published by Hayden, ISBN No. 0-8104-5167-0.
The book starts at a more elementary level and covels the
more important software aspects and ignores the hardware
almost €ntirely.

1.2 Getting Started
Load ZAPP in the usual way. In the top left hand corner is
a red,/blue marker. At the bottom ofthe scleen is the ZAPP
message and the input prompt C> !. The C prompt indi-
cates that you are in the "command/edit" mode (call it "C
mode" for convenience).

Al the moment you do not have a source program in
the machine. The block is the "eof marker", marking the
End Of the source File.

1.3 Using the Fditor
To enter a program could hardly be easier. Simply type in
an assembly language stat€m€nt, for example:

C> ld s,l0l
You must leave a space between ld and a and press the

ENTER key at the end ol the line. Do not put any oth€r
spaces in the line.

If you type an invalid instruction then you mustçorrecl
it because it will not be accepted. To se€ this type in

C> ld cc,202

The line will not be accepted when the ENTER key is
pressed. Instead the C will change to R (for Re-enter) and
a query will appear at the beginning of the assembly state-
meot. Use the RIGHT anow key to move the cu6or past
the lilst c, delete the letter using the DELETE key and
replace it by a b so as to generate the corrected line:

R> ld bc,202
Press ENTER and the line will be accepted.

Enter the rest of this routine:
C> ld a,101
C> ld bc,202
C> ld de,303
C> call frcd
C> rrt
C> fr€drld h1,,()
C> ret

Notice that everything is neatly "tabbed" in the listing
for you and the lines are numbered, exc€pt where the fred
label has been used. Notice also that the r€d/blue marker
moves down as you erter each line. The marker identifies

the "çurrent line" and each new linc is insert€d above the
"current line".

1.4 Msklng Cbarges
You may use the UP, DOWN, LEFT and RIGHT arrow
keys to move the curent line marker up and down the list-
ing. The line can lhen be edited using the alphanumeric
keys to insert characters, the LEFTand RIGHTarrow keys
1o move the pointer and the DEL key to delete a character.
The COPY key can then be used to copy the current line to
the bottom of the screen.

To DELETE a line in the program make it current by
using the UP or DOWN arrow keys and press DELETE
followed by CLR.

Suppose that in the line
fredrld bl,4)

you wanted to change the number to r()4. ln such a small
program you could very easily use the ARROW keys to
make il current, but for large programs (ZAPP can handle
over 3000 lines), there are two çonvenient methods
available.

The filst method to make a line number current is by
erteriDg an equals sign (=) followed by the line number.
Try entedng

C> =6
and notice that the line is made current. =0 is very useful for
getting to the end of a long program as it always makes the
last line in the file (the eof line) current.

The second method is to ask ZAPP to search for a par-
ticular sequence of characters by ent€ring a query sign (?)

followed by the s€quence required. For example to make
the line

fred:ld hI,40
current you could type aûy of these:

C> ?fred:
c> ?hl
C> ?,m etc.

A search always starts at the line below the current liûe
and pressing ENTËR repeats the search. Try typing

c> ?td

and press ENTER s€veral times to see the effect,

1.5 Using tbe Ass€mbler
Having entered the program the command

C> +asm

assembles it. Assuming that no eûors are found the
message

FROM: 04BEh (1214)
TO: 04CDh (1229) (16 byteo
is given, telling you the code was assembled at address
04CD (1214 in decimal) aûd that it occupies 16 bytes.

Ifan erloris detected assemblyslops and a flashing ? is
displayed. There are ways described in Section B to correct
the program and to continue assembling or you may press
ESC, cor€ct the eûor using the editor and then reassemble
from the beginning.

1,6 Using the Monitor
It is possible of course to write a program in assembly lan-
guage which is free ol assembly errors but which does not

function as the programmer intended when it is executed.
These kinds of errors are often called "bugs" and they can
sometimes be extremely difficult to identify.

For this reason ZAPP includes a powerful single step
and multi step monitor which will either step through a
machine code program one instruction at a time or exeçute
a group of instructions in one st€p if required. Al each step
the monitor displays the cufient status ofthe ZS0 registers.

To invoke the monitor enter the command:
C> *mon

The prompt changes 1o M> to indicate the monitor is
active. The monitor begins at the first instruction i.e. ld
a,l0l and pints it in disassembled and hexform. Belowtbis
is printed the values in the registels andflags. The format is:

addfess hcxbytes
xDEx xHLx flags
xSPx (SP)

(SP) is the top item on the stack.

Pressing ENTER causes the instruction to be per-
formed. Ifyou have the routine listed in Section 1.2 in your
machine, assemble it, enter the monitor and press ENTER
three times, observing the values in the registe$ changing
as each instruction is executed. Note that the numbers
in the disassembly are in decimal, but the registers are
displayed in hex.

You should now have the irstruction "call fr€d" dis-
played, Press ENTER again. The instruction "fred:ld
hl,,l(X" is displayed because pressing ENTERfora "csll"or
"rst" instruction causes the called routine to be executed
one step at a tim€ just as if it were pan of the main program.

instruction
xAFx xBCx
xIXx xIYx

Altematively pressing ENTER + CAPS SHIFT will cause
the monitor to execute all the steps in the called routine at
one go. This is very useful for skipping over routines you
know you can trust.

Press ENTER twica more. Performing the final 'ttt"
returns you to C mode with the message:

EXIT OK
indicating all is well.

1.7 Saving Source Progrsms end Ass€mbled Code

Having written and checked the routine the next job is to
save it. You may save your source programs or the
assembled code.

To save the source plogram the command is:

C> *ssr lilename
You can save rhe object code program using the

command:
C> tscd filename

You may use any filename you choose up to 16

characters, not including a comma or sernicolon.
There are many more facilities in ZAPP described in

the next section. You will find that ZAPP is of enormous
help in developing machine code programs, whether you
are an experienced programmer or a complete novice.

SECTION B

Main Description

1.0 STARTING UP
I-oad ZAPP in the normal way. At the top of the screen is
the EOF marker. At the bottom is the ZAPP message and
the prompt:

c>!
The letter in the prompt (C in this case) indicat€s the

mode in which ZAPP is operating. C indicates "command/
edit" mode, or C mode. This mode is used for editing the
source program, to access the other modes and to enter "*"
commands.

2.0 EDITING THE SOURCE FILE
The editor maintains the source program as a list of lines.
At any time there is a "currenl line", indicated by a red,iblue
block, where editing takes place. The editor is controlled by
the following keys:

COPY Modifycurrent line
LEFTARROW Move current line pointer up

aboul one screenful.
RIGHTARROW Move current line pointer

down one screenful.
DOWN ARROW Move current line pointer

down one line.
UP ARROW Move current lin€ pointer up

one line.
DELETE then CLR Delete current line.

10

The above keys only have the indicated €ffect if they
are the first key pressed in a line, i.e. when thc "!" is
displayed.

The LEFI and RIGHT ARROW and DELETE keys
are also used to correct a line in the editing area at the bot-
tom of the screen. Pressing CLR clears the line.

2.1 The Autolister
The autolister lists part of the source program containing
the current line whenever the source is edited. Pressing
ENTER on its own also forces an autolisting.

2.2 lnserting Lines
Valid assembly instructions (i.e. those not containing a syn-
tax error) are inserted into the source prcgram immediately
above the cufient line. lfan error is detected in the line then
it is not accepted and must be corrected.

2.3 Changing the Curr€nt Line
This may be done using the ARROW keys or particular
lines may be made current:

by LINE NUMBER
Type the line number (given in the listings) preceded
by a "=", e.g.

C> =100
Line 0 is conventionally the last line in the file (i.e. the
eof line), so

C> =0
is a quick way of getting to the end of the program.

by CONTEXT
Type the item to be located preceded by a ?, e.g.

C> ?string

1l

The s€arch begins with the line BELOW the curent
line for any line containing the string. If the striDg is not
lound the current line is not changed. The search may
be repeated as often as required by pressing ENTËR.

2.4 Editor Commands
*del n1,n2 - delete lines nl to n2 inclusive (n2=0 for

end offile).
*eof - print highest address used by source file.
*new [n] - delete source program from memory and

reset base ofsource area to n.

3.0 lHE ASSEMBLER
3.1 Instructlon Format
Insftuctions take the form:

ILABEL:l MNEMONIC [;COMMENT]
or jCoMMENT

the items in square brackets are optional. The ZAPP
assembler recognises the standard z'80 instruction
mnemonics, with the €xception that ex af,af must be writ-
ten without the quote, i.e. ex af,af. ZAPP recognises the
sho forms add s, rdc s and sbc s for add a,s, adc a,s and
sbc r,s.

3.2 Dlrectives
ln addition to the 280 instructions ZAPP also recognises
the following dir€ctives:

delb n - assemblc a6 th€ tlyte value n
defw nn - assemble as the double byte nn (low

bytefirst)

12

org nn - assemble subsequent instructions al
address nn and above

d€îm "string - assemble as the character codes for the
characters in the string specified

lisr - enable listing (DEFAULT)
nlst - disablelisting
pmt - send listingtop nter
scm - send listing to screer (DEFAULT)
base - set base address forsaving code
Iabel:equ nn - set symbolequivalent to number nn
file filename - assemble from file

3.3 Numbers
Numbers may be written in decimal, hex, charactercode or
represented by a symbolic name (symbol). Hex numbers
must be preceded by an ampe$and or b€gin with a digit and
end with a'h', e.g.

&7FFE or 0DF10h
Most character codes can be r€presented by their

associated character preceded by a double quote, e.g.
ld a,"a is equivalent to ld a,65

Index register offsets must be decimal in therange-128
to +127 .

3.4 Synbob
Symbols (or labels) are mûemonic names given to numbers
to mak€ the program easier to understand and w te. A
symbol is defined, (i.e. made equivalent to a number) by
using it as a label. In the instruction

label:equ nn
the symbol used as the label becomes the same number nn.

13

In any other instruction the label symbol becomes equiva-
lent to the asscmbled address of the instruction, e.g.

43 org 9000h
fred:ld a,100

the symbol 'fred" is made equivalent to the value 9000h.

3.4.1 Forward References
Symbols may appear as operands before they are de{ined,
e. g.:

37 inc a
38 jr nz,jim
39 ld b,45

jim:ld c,45
Ir this case the use of 'Tim" in the jr instruction (line

38) precedes the definition ofjim in the line jim:ldc,,l5 (line
40). The use of a symbol before it is defined is called a "for-
ward reference". Forward references may be used freely in
ZAPP, except that they rnay not take an offset, or be used
where 8 bit data is required, except for relative addresses.

3.4.2 Permanentsymbols
Symbols like'.fred" and 'Iim" abov€ are called "permanent
symbols", because they stand for the same value through-
out a program. They may be defined once only. Such sym-
bols must begin with a letter and may consist of up to six
characters. Comma, semicolon and space may not be used
in symbols.

3.4.3 Temporary Symbols
There are ten "temporary" symbols, repres€nted by the
digits 0-9. They are very useful because they save the need

14

to invent unique names for trivial loops, etc and beçause
they save space in the symbol area. They may be redefined
any number of times in ore program, only the most recent
use ofthe symbol being active.
For example:

2:inc hl First: inc hl
72 cp (hl) '72 cp (hl)
73 jt nz,:2 73 jr nz,First'74 ld a,(de) : 74 ld a,(de)

2:cp (hl) Second: ç (hl)
76 inc hl 76 inc hl
77 jr z,:2 77 jr z,Second

Note that temporary symbols wheû used as operands
are precÆded by a colon 10 distinguish them from integers.

To make a fo.waid reference with a temporary s),nbol
add an "f'as a suffix. e.g.:

3:cp (ix-l)
48 jr z;3f
49 dec hl

3:cp (hl)
The symbol :3f refers to the label 3: on the cp (hl)

iDstruction. Using the forward reference means th€ label on
the 3:cp (ix-l) instruction is ûo longer accessibl€.

3.5 Opcrstors and Offsets
The addition and subtraction operators (* and -) may be
used freely in ZAPP except in an operand which is a for-
ward refereûc€. The following instruction for example is
illegal if fred is a forward reference .

jr fred * 10

15

The most significant byte and least significant byre
operators are > and < respectively, i.e.

>1234h = 12h
<1234h = 34h

3.6 LlstiDgs
The listing will normally be sent to the screen or printer as
set by *prnl and *scm commands. Switching the listing off
using the nl6t directive greatly increases assembly sp€ed.
The directive list switches listing back oD.

The listing displays the instruction, rhe assembly
address and the hex bltes that make up the machine code
instruction. However for relative brarches the absolute
address is printed in brackets, e.g.

13 jr 1000h 1003 18<1000>
For forward references the assembled bvtes are not

known and such bytes are indicated by an astelst (*) after
the address.

3.7 End Report
At the end of assembly any forward references left un-
defined are printed. This is followed by the repon:

BASE: xxxxh (ddddd)
TOP: xxxxh (ddddd) (ddddd byies)

The BASE address is set by the tasm command or bar€
directive.

The TOP address is the last byte assembled. Unless the
org directive is used to plant code outside these addresses
then these addresses are the lowest and highest used by the
assembled code. The BASE and TOP addresses are used by
many commands as the default values if parameters are
omitted-

t6

3.E Errors
If an error is detected at assembly time then assembly stops
with a flashing ? and a two digit hex code. At the bottom of
the screen an X> input prompt isdisplayed, and the follow-
ing keys may be used:

COPY - correct and retry line.
ENTER- continuewith next line
ESC - abandonassembly

Some errors return immediately to the C prompt asthe
assembled code may be co[upt even after correcting the
etTor.

If any erors remain uocorrected after assembly thcn
the message:

ERROR(S) IN ASSEMBLY
is giv€n, with the End Report.

3,8.1 Error Cod€s

The following two digit codes are given with a flashing ? to
indicale an ellor.

?00 - nostatement withlabel
?E0 - no label defined for this temporary symbol
?El - label is a register tame etc.

?E2 - permanent label already defined
?Fl - errorin lirst operand
?F2- error in second operand
?77- unrecognisedinstruction
?DD- invalid operands.

The DD error can be generated in the following cases:

1) an illegal register or number (e.g. sbc, de,bc or im 4)

17

2) a forward reference for 8 bit data
3) a forward reference with an offset

?FD - relative address range exceeded.
?FE- chainingeûor
?FF- chaining error

3.8.2 Chaining Errors
ZAPP is a "one pass" assembler, i.e. it works through the
source file once ody, creating all the object code as it goes.
This makes it faster than other assemblers but it means that
"chainiûg errors" can sometimes occur. ZAPP chains
together forward references to s).mbols and then returns to
fill themwhen the s]'mbol isdefined. Ifatsome stage ZAPP
cannot complete the chain (because for example it needs to
store a relative address greater than FF in a one byte loca-
tion) then a chaining error occurs. In the following example
a chaining ellor will occur if there are more than FF bytes
in the object code between the r.jp tom" and tbe.lr aom"
instructions.

jp lom

jr tom

tom: ld a.100
The best cure in this case is to use a second symbol aûd

equivalence it to the main symbol when it is d€Iined, e.g.:
jp tom

jr toml: do this only iljr tom causes a chaining
error.

tom : ld a,100
toml: equ tom

3.9 Direct Ass€mbly (Command *dir)

In direct assembly mode assembly instructions entered at
the keyboard are assembled immediately. Direct assembly
mode is indicated by the prompt letter D. To exit from
Direct mode type the directive "end" or press ESC.

3.10 Ass€mbly From File
(Commands tasf, lasf+ and directive file)

ZAPP has the ability to assemble sourca programs saved on
disc or tape. This allows very large source files to be assem-
bled. You may nol use the 'file' assembly directive within
source programs that are themselves assembled from file.

3.ll Remote Assembly

ln remote assembly the code is not planted at the address
whele it will be executed. For example a routine can be
developed in high RAM and finally be remolely assembl€d
to be loaded and run in the RAM occupied by ZAPP. Note
that code which has been remotely assembled should not
normally be run or single stepped using ZAPP.

4.0 THEMONITOR
4.1 Displly Formsa

The monitor displays instructions in disassembled and hex
form, together with the address and the regisler values
BEFORE the instruction is pe ormed. The format is:

[LABEL:] instruction address hex-bytes
xAFx xBCx xDEx xHLx cfzfpfsf
xIXx xIYx xSPx (SP)

t9

If there is a symbol defined as the address of the
iostruction it is printed as a label. l6bit mrmb€rs are printed
in decimal. Relative addresses are showD as the absolute
address in hex thus:

djnz fred<xxxx>
The address and bytes are shown in hex.

xAFx etc. stands for tbe value ofthe indicated register
pair in hex. cf, zf, pf and sf stand for the values of the carry,
zero, parity and sign flags.

4.2 MoDitor Comn nds
The monitor is controlled by the following commands and
keys:

ENTER - p€rform instruction
ENTER +
CAPS SHIFT - p€rform call stsubroutine
no - skipinstruction
af no - set afregister pair to nn
bc nn - set bc register pair to nn
de nn - set de registerpairto nn
hl nn - set hl registe!pairto nn
sp nn - setstackpointer to nn
pc nn - set program count€rtonn
a nn - setregister ato nn
fc - cornplement carryflag
fz - complem€nt zero flag
fp - complement parityflag
fs - complement sign flag
*hex nn - display/cdit a hex dump of memory
rur - run program

call oo -call routine
brk In,][addr] - set/display breakpoints
brun - break and run

4,3 Pc oming lDrtructions (ENTER or CAPS SHIr-I
+ ENTER)

Pressing ENTER performs the instruction. "crll" and'tsa"
instructions continue by single stepping through the called
routine.

Pressing CAPS SHIFI + ENTER has the same cffect
as ENTER for instructions other than call or rst. For these
instructions it causes the call tobe performed, executingthe
routine before returning to the monitor. Not€ that in this
case the relurn address is inside ZAPP and the routine
should not use the retum address intemally.

4,4 Modltylng ReSl6ters (a, ef, bc, dc, hl, rp, lx, iy, pc)

After modifying a register or flag the monitor redisplays the
instruction and registe$. Ifthe number is omitted or invalid
then the register is not changed.

4.5 Breakpolnts (brk, run, brun)
Breakpoints are used to restart the single step monitorafter
lhe monitor "run" command, This is particularly useful for
testing loops etc., for example:

stan: ld c,"a
2 td b,26

0: ld a,c
4 call & bb5a
5incc
6 djnz :0

fini: ret

2l

This routine prints the alphabet. Single stepping
through is tedious and unnecessary once you are sure the
loop works correctly. After going round the loop a few
times, the commard:

M> brk flnl
s€ts a breakpoint at the address of the "ret" instruction. The
command

M> run
runs the routine from the point reached up to the normal
exit or a breakpoint. If a breakpoint is met single-stepping
restarts.

Up to four breakpoinls may be set, numbered 0, 1, 2
and 3. If no breakpoint number is specified breakpoint 0 is
used. If no pammeters are used with the command the
çurent breakpoint addresses are displayed only.

The command "brun" means "break and run" and sets
a breakpoint (number 3) at the address of the next instruc-
tion and then "runs" the routine.

4.6 Monitor Messsges

The following messages are generated by the monitor:
1) SP WARNING

This indicatesthatmorevalueshavebeenpoppedfrom
the stack than have been pushed onto it since the monitor
was last entered.

This is a waming only and does not stop the monitor.

2) EXIT OK
This message indicates that the routine has terminated

correctly.
3) BAD EXIT_ STACK ERROR

This message indicat€s that the stack is not correct
although the routine has terminated.

4) BAD OPCD AT xxxxh (ddddd)

This iDdicates that the instruction at the irdicated
address is not a valid 280 instruction.

5.0 THE DISASSEMBLER
The disassembler is available using the command *dis in C
mode. Starting at the specified address the disassembler
begins disassembling the code, giving the instruction,
address and hexbytes. The disasseDbly may be sent to the
printer by using the *prnt command.

6.0 THE HEX MEMORY EDITOR
The contents ofthe memory may be edited by the command
*hex in C mode or from the monitor. The editor displays up
to 8 bytes on a line, each line terminating at an address
xxxTh or xxxlh. A dump of the characters for the cod€s
between 32 and 127 is also given.

At the end of each line displayed the prompt H> is
given, pressing ENTER displays 8 more bytes. Pressing
ESC exits from the editor.

23

Typing a nurnber after the H> prompt allows the
memory to be altered beginning at that address. Tbe
address and current contents of the byte are displayed and
you can alter the contents by pressing two hex digits. Pres-
sing ENTER moves onto the next byte. Pressing UP-
ARROW moves to the previous byte. Pressing ESC exits
from the editor.

7.0 FILEMANAGEMENT
7.1 Losdtng/Appending Source Programs
The command *lsr f loads a source {ile, erasing any source
in RAM. The command tasr f loads a source tile and
appends it - i.e. adds it to the end of a source in RAM.

The message

Not source format
is given ifthe loaded file does not appear to be a yalid source
program.

7.2 Saving Source Programs
The command

*ssr f
is used to save source programs,

7.3 Sal'lng Aslembled Code
The command

'scd f[,n1][,n2]l
saves the area of memory between lhe sp€cified addresses.
It is nol possible to save code in auto-run form from ZAPP
- you must return to BASIC and save it from there. n1
defaults to the BASE address, and n2lo the TOP address.

7.4 Losding Code

The command
tlcd f.n

loads the specified file at the address giv€n.

25

26

SECTION C

27

QUICK REFERENCE SECTION
1.0 Delinitions
This pan of the manual is for instant reference to the
facilities iû ZAPP. Each command is described as follows:

1) The command and its format.
2) The use of the command.
3) The parameters and defaults.

The parameters are either numbers (m, n1 and n2)
filenames (f) or line numbers (L1, L2). Filenames are used
in saving, loading and veryifying commands. Filenames
may be omitted for loading and verifying.

Numeric paramet€rs may be written as a decimal, hex
or symbol, with offset. Symbols must be defined. The form
(nn) may also be used. In this case th€ oumber passed as a
parameter to the command is the contents of the 16 bit
location whose address is given by nn.

In thc following description a numeric parameter in
square brackets, i.e. [nn] is optional. The default value
depends on the command in question.

The message

Parameter error
is given when the parameter passed is badly formed, an
undefined symbol or out of range.

2.0 (*' COMMAND SUMMARY
"asf f[,[n1][,n2]] Assemble source file f planting code at

address nl. (Default = eof + 128). If n2
given then code is generated suitable for
relocation atfhat address.

28

asf f

*asm
[n1][,n2]

'asm*

*asrf

'bye

*cat
* delLl,L2

*dir
Inn]

*dis
[nn]

.do
[nn]

*eof
*lcd f,n
*lsrf

'mon [nn]

*new
[nn]

*num nn
*prnt

Assemble source file f, continuing from
end oflast assembly.

Assemble source program in memory. n1
and n2 as for *asf,

Assemble source program in memory,
continuing from end oflast assembly.
Append sourcc file f to source program in
memory.
Return to BASIC. (Re-enter ZAPP using
CALL 36000).

Catalogue tape or disc.
Delete lines Ll to L2 inclusive (L2 = 0 for
endofprogram).
Enter'direct asscmbly' mode (default =
TOP + 1).

Disassemble memory at nn (default =
BASE).
Call machine code routine at nn (default =
BASE).
Give top address ofend ofsource program
Load file f at addressn
Load source program f
Ent€r monitor with PC - nn (default =
BASE)
Delele source program and reset base
address of source area to nn (default = no
change)

Pdnt value ofnn in hex and decimal
Direct output to priDter

29

*sps nn

*ssrf
*syms

-scd
fl,[n1l[,n21] Save m€mory from n1 to n2 inclusiv€

(defaults nl = BASE, n2 = TOP)
Set stack pointerfor runningor monitoring
code routines
Save source program

Display permanent symbols and th€ir
vâlues

'call [nn] Call routin€ at nn (default = BASE).
(Disabled if erro$ or source program
changed).

3.0 EDITINGCOMMANDS
The editor maintains the source program as a list of lines.
At any time lhere is a'turrent line", indicared by a red
block, where editing takes place. The editor is coDtrolled by
the following keys:

COPY
LEFTARROW

RIGHTARROW

DOWNARROW

UPARROW
one line.

DELETEtheCLR Delet€ current line.
The above keys only have the indicated effect if they

are the first key pressed in a line, i.e. when the "l" is dis-
played. The LEFT and RIGHT ARROW and DELETE
keys are used in the middle of a line to correct the line.

Modifycurrent line
Move current line pointer up
aboutone screenful.
Move curent line pointer
down about one screenful.
Move current line pointer
down one line.
Move current line pointer up

30

Pressing CLR clears th€ line.

Fditor Commands:
*del n1,n2- delete lines n1 to n2 inclusive (n2 = 0 for end of

file).
*eof - print highcst address used by source file.
*new[n] - delete source program from memory, resetting

start address of memory.

4.0 ASSEMBLER DIRECTIVES
In addition to the 280 instructions ZAPP also recognise the
following directives:

defb n - assemble asthe byteyalue n
defu nn - assemble as the double byte nn (low

byte first)
orgnn - assemble subsequent instructions at

address nn and above
deûn "strirg - assemble as the character codes for the

characten inthe string specified
list - enable listing(DEFAULT)
nlst - disable listing
prnt - send listing to printer
scm - serd listing to screen (DEFAULT)
base - set base address for savingcode
label:equ nn - set symbol equivalent to number nn
file filename - assenble from file

3l

5.0 ERROR CODES
?00 - nostatementwith label
?E0 - no label defined for this temporary symbol
?El- label is a registername etc.
?E2 - permanert label already defined
?F1- error in first operand
?F2- errorin second operand
?77- unrecognisedinstructioD
?DD- invalid operands.
?FD - relative address range exceeded.

?FE- chaining error
?FF- chainingerror

6.0 MONITOR COMMANDS
- perform instruction

- pelform calyrst subroutiDe
- skipinstruction

- set afregisterpairto nn
- set bc registerpairto nn
- set de register pair to nn
- set hl register pair to nn
- set stack printer to nn
- set program counler to nn
- set registera to nn

- complemenl carryflag
- complement zero flag
- complement parity flag

ENTER
ENTER +
CAPS SHIFT
no
af nn
bc nn
de nn
hl nn
sp nn
pc nn
ann
fc
1z

fp

32

fs - complement sigD flag
'hex nn - diçlay/cditahexdunpof memory
run - runProSram
câll nn - call routinc
brk [n,][addr] - set/display breakpoints
brun - brea* andrun

33

Prinl€d by Powag€ Press. Aspley cuis€, Millon Keynes MKlT 8HF

z.APP

280 Assembly Programming Pâckage

Now you can develop professional quality machine code
software on youl Amstrad CPC464 using this fast and
ve$atile assembly languag€ programming package.

Features include:
* Editor - create, rearrange and modify your source

code mnemonics quickly and easily using the comprehen-
sive text editor.

* Assembler - all the usual assembler facilities plus
lemporary labels, some arthimetic operators and limiled
lorward reference all at a single pass for high speed opera-
tion.

* Mooitor - complete "ftont paDel" controls plus
single and multipl€ stepping and breakpoints.

* Disassembler - symbolic disassembly with exterDal
labels for full analysis of unknown object code.

* Hex Editor - hex and ASCII line-by-line dump with
edit facilities.

* File Manag€r - full cassette handling facilities
including append source file and assembly ftom file.

ZAPP was w tten by Keith Prosser of Hewson Con-
sultants who are leading experts on the use of the 280
microproc€ssor in home computer systems and publishers
of many programs for the Amstrad CPC464 and the
Spectrum Plus.

