
HOW TO USE THE CPC BOOSTER+

The CPC booster+ is very easy to use, even through BASIC. In this document

I will explain how to use all the functions of the card by analyzing the memory

map. I will use both Assembly and Basic, but in most cases you will have to use

only assembly to use the speedy characteristics (you can’t have 230400 baud

serial communication in Basic!). The only thing you need is simple IN and OUT

commands to give orders to the board. All the addresses are 16bit, but the high

byte is always &FF for the CPC booster.

When you switch on your CPC, after one second the led of the card will be

turned on. This means that the card is working. If during the operation the led

flashes it means that the microcontroller is resetting itself because the power

supply is insufficient. This may happen if you have an external drive connected

which takes power from the CPC and not from an external power supply or if you

have too many peripherals connected. In this case, send me an e-mail and we’ll

see what we can do to avoid this problem. Be sure that you have connected the

cable in the right way otherwise the led won’t flash at all.

The CPC Booster+ is an open source project. Since most of you know Z80

assembly, then it will be easy for you to write your own routines in AVR

assembly, which is very similar to the Z80. Right now, there is a LOT of free

space in the bios of the booster to fill it with anything you want. Imagine that

the booster has a faster processor not only because of the crystal frequency of

the 11.05292 MHz, but AVR is also a RISC processor, almost every command is

executed in 1 machine cycle.

If you are willing to add your own routines, then don’t hesitate to

contact me in order to give you all the software and details you need to write

your own stuff. But I would advice you to send the changed source code back to

me in order to spread it and keep one version of the bios for everyone. Don’t

forget that an update of the bios is possible through the CPC.

If you also have trouble on using the booster, even after reading the

manual, then contact me and perhaps we can make a forum that we could discuss

about it. I can tell you that the booster’s capabilities can be a very long

subject to analyze.

The CPC Booster hardware includes the following things:

-One RS232/485 serial port.

-Two Analog to digital converters (8 Bit) with rec level

-Two PWM channels, used as digital to analog converters

-One 5bit TTL output

WARNING: Before you use any of the fast routines, in most cases you have to

disable the interrupts first:

LD HL,&C9FB

LD (&38),HL

Or use DI

Let’s start describing all the functions:

;**

;MEMORY MAP OF THE CPC BOOSTER+

;00 IN 10101010 TEST BYTE #1

OUT 00-$FF RESET BOOSTER

;01 IN 01010101 TEST BYTE #2

OUT 00-$FF RESET BOOSTER

;02 OUT 00-$FF PWM CHANNEL 1

;03 OUT 00-$FF PWM CHANNEL 2

;04 IN/OUT 00-$FF UBRR/BAUD RATE

;05 IN/OUT 00-$FF UDR READ/WRITE

;06 IN/OUT 00-$FF UART REG 1

;07 IN/OUT 00-$FF UART REG 2

;08 OUT 00-$FF UART TX/AUTO POLLING

;09 IN 00/$FF UART WAIT UDR CHARACTER

;0A IN/OUT 00-$FF UART READ TIME OUT*50ms

;0B IN/OUT 000XXXXX UART REG 3

;0C IN/OUT 00-$01 EEPROM ADDRESS HIGH

;0D IN/OUT 00-$FF EEPROM ADDRESS LOW

;0E IN/OUT 00-$FF EEPROM READ/WRITE

;0F IN/OUT 00000XXX ADC SAMPLING FREQUENCY

;10 IN/OUT 00-$01 ADC CHANNEL SELECTION

;11 IN 00-$FF READ ADC VALUE

;12 IN/OUT 00-$FF KEYBOARD READ

;13 OUT 00-$7F PAGE WRITE FOR UPDATE

;14 OUT 00-$FF DATA FOR UPDATE BUFFER

;15 IN/OUT 00-$7F ADDRESS OF BUFFER FOR BIOS UPDATE

;16 IN/OUT 00-$7F ROM PAGE NUMBER

;17 IN/OUT 00-$7F ADDRESS OF PAGE

;18 IN 00-$FF READ ROM DATA (PAGE MODE)

;19 IN/OUT 00-$3F ROM ADDRESS HIGH

;1A IN/OUT 00-$FF ROM ADRESS LOW

;1B IN 00-$FF READ ROM DATA (ADDRESSING MODE)

;1C IN 00-$FF AVAILABLE CHARACTER IN UART BUFFER

 OUT 00-&FF RESET UART BUFFER

;1D IN 00-$FF READ CHARACTER FROM BUFFER

;1E IN/OUT 00-$1F 5 BITS PORT DIRECTION SETTING

;1F IN/OUT 00-$1F 5 BITS PORT LATCH (OUTPUT)

;20 IN 00-$1F 5 BITS PORT INPUT

;21 OUT 00-$FF MULTIPLIER 1

;22 OUT 00-$FF MULTIPLIER 2

;23 IN 00-$FF RESULT HIGH BYTE

;24 IN 00-$FF RESULT LOW BYTE

;25 IN 00-$FF READ VERSION

OUT 00-$FF RESET TEXT ADDRESS

;26 OUT 00-$FF PWM BUFFERED STEREO

;27 OUT 00-$FF PWM MONO TO BOTH CHANNELS

ADDRESS:&FF00 + &FF01 IN/OUT TEST BYTES / RESET

 Those two addresses are used to test the board, mainly to check if the

connector’s cable is working. If you type in BASIC

?INP(&FF00),INP(&FF01)

and you get the results 170 , 85 then the board is working. Address 00 always

reads 170 and address 01 always reads 85. If you get any other values, then

there must be a problem with your cable. Try moving the cable a little bit till

you get the correct values. The CPC connector is a problematic one ☺

If you make an OUT any value to those addresses, then the CPC booster

makes a Reset.

OUT &FF00,n or OUT &FF01,n (n = any value from 0 to 255)

ADDRESS:&FF02 + &FF03 IN/OUT PWM CHANNELS

The board has two 8BIT PWM channels. PWM stands for Pulse Width

Modulation, which means that it is an output that gives you pulses which we can

alter their width. To alter the width, we send 8bit values to those addresses.

To send a value to channel 1 for example, you type in BASIC

OUT &FF02,X where X is the value we want to send

In assembly we type

 LD BC,&FF02

 LD A,X

 OUT (C),A

It’s the same thing for channel two: instead of &FF02, we use &FF03. If

you make an in on any of those two channels, you can read the last value you

sent. The output needs a pre-amplifier, or just a good amplifier. Due to the

low-pass filter, which is used to turn the pulses into DC signals (the Digital

to analog converter) , you will get a more bass sound. No need for digiblaster

or soundplayer if you have a CPC Booster+, you can play stereo samples and the

quality is good.

ADDRESS:&FF26 IN/OUT PWM BUFFERED STEREO

In order to have values played on both channels at the same time, you can

use this address. First you send the value for PWM channel 1 which is buffered

and when you send the value for PWM channel 2, both values are transferred to

the output at the same time. If you make an IN, you clear the buffer and the

routine is waiting again for a value for PWM channel 1. You can clear the buffer

at first, you don’t have to clear it after every two values you send.

LD BC,&FF26

IN A,(C) ;Clear the buffer

LOOP: LD A,X ;Value for channel 1

OUT (C),A ;Store the value to the buffer

LD A,Y ;Value for channel 2

OUT (C),A ;Now send both values to PWM channels

JR LOOP

ADDRESS:&FF27 IN/OUT PWM VALUE TO BOTH CHANNELS

If you want to play mono samples at both channels, to have one value

played at the same time to the two PWM channels, you can use this address.

LD BC,&FF27

LD A,X

OUT (C),A ;Value is transfered to both channels PWM 1 & 2

THE USART – SERIAL COMMUNICATION

The addresses from &FF04 to &FF0B are used for the UART, which means

Universal synchronous/asynchronous receiver-transmitter. Or just RS232. I

suggest you to use assembly though it’s possible to use Basic at low Baud rates.

An important thing in high speed communication is to disable the interrupts

first. We can control and set up the RS232 using three registers of the CPC

Booster+: UART REG1, UART REG2 and UART REG3.

The CPC Booster+ has also an RS485 network. You can transmit to the RS485

and the RS232 at the same time but you can only read data from one of them.

There’s a switch on the board which selects from which port to read data.

ADDRESS:&FF04 IN/OUT UBRR (Baud rate)

 The address &FF04 is used to select the baud rate of the UART. It’s a

value between 0-255 and it’s calculated like this:

UBRR= ((FREQUENCY / BAUDRATE) / 16) – 1

BAUDRATE= FREQUENCY / ((UBRR+1)*16)

In our case:

UBRR= ((11059200 / BAUDRATE) / 16) – 1

There are two modes to select the baud rate. The normal and the double speed

(U2X) can be selected in the UART REG3 which will be described later.

U2X=0 U2X=1

UBRR BAUDRATE BAUDRATE

4800 143 X

9600 71 143

14400 47 95

19200 35 71

28800 23 47

38400 17 35

57600 11 23

115200 5 11

230400 2 5

345600 1 3

691200 0 1

1382400 X 0

If we want to select 57600, then we type in BASIC

OUT &FF04,11

And in assembly

LD A,11

LD BC,&FF04

OUT (C) ,A

We have the ability to read also the UBRR value we’ve selected

?INP(&FF04) in BASIC

and in assembly:

LD BC,&FF04

IN A,(C)

ADDRESS:&FF05 IN/OUT UDR READ/WRITE

This address has actually two separate functions, one for IN and one for

OUT. When we use the IN command, we read the RX input of the UART and when we

make an OUT, we transmit a value to the UART. But in order to use the UART

properly, we will have to examine the flags first.

ADDRESS:&FF06 IN/OUT UART REGISTER 1

RXC

TXC

UDRE

FE

DOR

PE

RXB8

TXB8

This register contains 6 flags in order to control the UART. To read them

we use in Basic

?INP(&FF06)

and in assembly

LD BC,&FF06

IN A,(C)

BIT 7 – RXC: UART RECEIVE COMPLETE

 This bit is set when the UART has received a character. So before we use

the address &FF05 to read a value, we have to check first this bit to see if a

character was received. This bit is cleared by reading the UDR (&FF05).

BIT 6 – TXC: UART TRANSMIT COMPLETE

 This bit is set when the entire character was transmitted, including the

stop bit. This is used mainly for half duplex communication, where you have to

know when your character has been transmitted before you send the next one or to

enter receive mode. This bit is cleared by writing a logical one to the bit.

BIT 5 – UDRE: UART DATA REGISTER EMPTY

 This bit is set (one) when a character written to UDR (&FF05) is

transferred to the transmit shift register of the microcontroller and the UDR is

empty. When this bit is set it means that we can send a new character to UDR

(&FF05). This bit is cleared when we send a character to UDR.

BIT 4 – FE: FRAMING ERROR

 This bit is set if a framing error condition is detected, i.e. when the

stop bit of an incoming character is zero. The FE bit is cleared when the stop

bit of received data is one.

BIT 3 – OR: OverRun

 This bit is set if an overrun condition is detected, i.e. when a character

already present in the UDR register is not read before the next character has

been shifted into the receiver shift register. The OR bit is buffered , which

means that it will be set once the valid data still in UDRE is read. The OR bit

is cleared when data is received and transferred to UDR.

BIT 2 – PE: Parity error

This bit is set if the next character of the UART had a parity error when

received and the the parity checking was enabled at that point. This bit is

valid until the UDR (&FF05) is read. Always set this bit to zero when writing to

UART REG1.

BIT 1 – RXB8: Receive data bit 8

RXB8 is the ninth data bit of the received character when operating with

serial frames with nine data bits. Must be read before reading the low bits from

UDR.

BIT 0 – TXB8: Transmit data bit 8

TXB8 is the ninth data bit in the character to be transmitted when

operating with serial frames with nine data bits. Must be written before writing

the low bits to UDR.

OK, if those bits seem like chinese, don’t worry. Here are some routines to make

things more clear:

BASIC – Receiving data

10 A=INP(&FF06) ;READ THE FLAGS

20 A=A AND 128 ;CHECK THE RXC FLAG

30 IF A=0 THEN 10 ;IF RXC IS NOT SET THEN GOTO 10

40 A=INP(&FF05) ;READ THE CHARACTER (RXC IS NOW CLEARED)

50 PRINT A

60 GOTO 10

ASSEMBLY – Receiving data

 LD BC,&FF06

RX_LOOP: IN A,(C) ;Read the flags

 AND A,%10000000 ;Check if RXC bit is set

 JR Z,RX_LOOP ;If zero, goto RX_LOOP

 DEC C ;Select &FF05

 IN A,(C) ;Read the received character and clear the RXC

BASIC – Sending a character / HALF DUPLEX communication

10 A=X ;X is an 8bit character we want to transmit

20 OUT &FF05,A ;Send character

30 A=INP(&FF06) ;Read the flags

40 A=A AND 64 ;Leave only the TXC flag

50 IF A=0 THEN 30 ;Wait till the TXC flag is SET. The flag will be set when

the entire character is transmitted

60 A=64 ;You can skip this since A is already 64

70 OUT &FF06,A ;Set the TXC bit to clear it (strange, isn’t it?)

80 GOTO 10

ASSEMBLY- Sending a character / HALF DUPLEX communication

 LD BC,&FF05

 LD A,X ;X= data we want to transmit

 OUT(C),A ;Send the character to UDR

 LD BC,&FF06

TXC_LOOP: IN A,(C) ;Read the flags

 ANDI A,%01000000 ;Check the TXC

 JR Z,TXC_LOOP ;If cleared, goto TXC_LOOP

 LD A,64 ;You can skip this

 OUT (C),A ;Clear the TXC by writing a logic one to it.

BASIC – Sending a character / FULL DUPLEX communication

10 A=INP(&FF06) ;Read the flags

20 A=A AND 32 ;Check the UDRE bit

30 IF A=0 THEN 10 ;If UDRE is cleared, then the UART is not ready to send a

new character

40 A=X ;X= Data we want to transmit

50 OUT (&FF05),A ;Transmit data

ASSEMBLY – Sending a character / FULL DUPLEX communication

 LD BC,&FF06

UDRE_LOOP: IN A,(C) ;Read the flags

 AND A,32 ;Check the UDRE bit

 JR Z,UDRE_LOOP ;If zero, goto UDRE_LOOP

 LD A,X ;X= data we want to transmit

 LD BC,&FF05

 OUT(C),A ;Transmit character

ADDRESS:&FF07 IN/OUT UART REG2

UMSEL

UPM1

UPM0

USBS

UCSZ2

UCSZ1

UCSZ0

UCPOL

This register contains settings for the UART.

BIT 7 – UMSEL: USART mode select

This bit selects between asynchronous (0) and synchronous (1) mode of

operation.

BITS 6,5 – UPM1,UPM0: Parity Mode

These bits enable and set type of parity generation and check. If enabled,

the transmitter will automatically generate and send parity of the transmitted

data bits within each frame. The receiver will generate a parity value for the

incoming data and compare it to the UPM setting. If a mismatch is detected, the

PE flag in UART REG1 will be set

UPM1 UPM0 Parity mode

0 0 Disabled

1 0 Even parity

1 1 Odd parity

BIT 4 – USBS: Stop bit select

This bit selects the number of Stop bits to be inserted by the

transmitter. The receiver ignores this setting.

USBS=0 1 stop bit

USBS=1 2 stop bits

BIT 3,2,1 – UCSZ2,UCSZ1,UCSZ0: Character size

The UCSZ2:1:0 bits set the number of data bits (character size) in a frame

the receiver and transmitter use.

UCSZ2 UCSZ1 UCSZ0 Character size

0 0 0 5 bit

0 0 1 6 bit

0 1 0 7 bit

0 1 1 8 bit

1 1 1 9 bit

BIT 0 – UCPOL: Clock polarity

This bit is used for synchronous mode only. Write this bit to zero when

asynchronous mode is used. The UCPOL bit sets the relationship between data

output change and data input sample, and the synchronous clock (XCK).

Transmitted data changed (TX pin) Received data sampled (RX pin)

UCPOL=0 Rising XCK edge Falling XCK edge

UCPOL=1 Falling XCK edge Rising XCK edge

ADDRESS:&FF08 OUT TX – AUTO POLLING

If you want to transmit a character in a full duplex or a half duplex

communication then you just send the character to the address &FF08 and the

flags are automatically checked by the program of the microcontroller!

BASIC: A=X

 OUT &FF08,A

ASSEMBLY: LD BC,&FF08

 LD A,X

 OUT(C),A

To select the type of communication you want to have (full duplex, half

duplex or 485 halfduplex), you can use UART REG3.

ADDRESS:&FF09 IN RX – WAIT UDR CHARACTER

ADDRESS:&FF0A IN/OUT TIME OUT VALUE * 50msec

The address &FF09 uses a time-out function. When you make an IN from this

address, if a character is received, you’ll read the value 255, if no character

appears after a time-out then you will read the value 0. To set the time-out, we

use the address &FF0A. Examples in BASIC and assembly:

BASIC – Receiving a character

10 OUT &FF0A,10 ;Set the time out at 10*50= 500 msec

20 A=INP(&FF09) ;Check if there is an available character in UDR

30 IF A=0 THEN 50 ;If after 500msec no character appears then we the

;get the result 0

40 A=INP(&FF05):END ;Else, we read the received character

50 PRINT “NO CHARACTER”

ASSEMBLY- Receiving a character

 LD A,10

 LD BC,&FF0A

 OUT(C),A ;Set the time out at 10*50= 500msec

 LD BC,&FF09

RX_LOOP: IN A,(C) ;Check if there is an available character in UDR

 CP A,0 ;If A=0 then goto RX_LOOP

 JR Z,RX_LOOP

 LD BC,&FF05

 IN A,(C) ;Read the received character

As I said above, when you make an IN from address &FF09, if no character

is received, you’ll get the value 255 after the time out, in our example the

500msec. But as soon as a character is received, you’ll get immediately the

value 0, you won’t have to wait the 500msec to pass.

ADDRESS:&FF0B IN/OUT UART REG3

UART BUFFER ON/OFF

U2X

485 AUTO POLLING

FULL/HALF DUPLEX

MASTER/SLAVE

Only the 5 lsb are used in this register. Bits 7,6 and 5 are always read

as zero.

BIT 4 – UART BUFFER ON/OFF: Enables/disables the UART buffer.

The CPC booster has a buffer of 255 bytes for the UART which improves the

communication. It can be enabled by writing 1 to this bit. More details about

the buffer in the following addresses.

BIT 3 – U2X: Double UART speed

This bit selects between normal and double speed for the UART. To

calculate UBRR when the double speed is selected you use this:

UBRR= ((FREQUENCY / BAUDRATE) / 8) – 1

BAUDRATE= FREQUENCY / ((UBRR+1)*8)

BIT 2 – 485 AUTO POLLING

If BIT 1 of UART REG3 is set (half duplex selected) then the Master/Slave

pin of the 485 is automatically driven by the CPC Booster when you use the

routine of TX AUTO POLLING (&FF08). If BIT 1 is reset (full duplex selected),

then this bit has no effect.

BIT 1 – FULL/HALF DUPLEX

With this bit you can select the type of communication to use with the TX

AUTO POLLING (&FF08) routine.

0=FULL DUPLEX

1=HALF DUPLEX

BIT 0 – MASTER/SLAVE

This bit directly drives the pin of TX/RX enable of the 485. Whenever you

want to transmit something to the 485 you have to set this bit and after the

transmission is over, you have to reset it. By setting BIT 1 and BIT 2 of the

UART REG3, this pin is driven automatically by the CPC booster when you use the

TX AUTO POLLING routine.

Except for the 485, this bit is also connected to the RS232 port as the

Carrier Detect signal.

UART BUFFERING

While I was trying to make my terminal program, I figured out that our CPC

is kind of slow for terminal emulation. Imagine what a terminal program does:

Checks for incoming characters, prints them, scans the keyboard, print and

transmits the pressed keys. The CPC was losing bytes even at very low speed. At

first I thought of installing a buffer on the CPC. I did that and there was a

huge improvement but still every now and then , some bytes were missing. So I

thought about installing a buffer inside the CPC booster. And it really works!

The communication is perfect even at 230400!

The UART buffer is 255 bytes long. It can be enabled or disabled. If the

buffer is enabled then you shouldn’t use &FF05 or &FF06 to read incoming

characters cause you will mess with the buffer. If the buffer is disabled you

use the old routines without changing anything. Enabling the buffer affects only

the incoming characters, the transmitting methods (half duplex/full duplex)

remain the same.

ADDRESS:&FF1C IN/OUT NUMBER OF AVAILABLE BYTES IN BUFFER / RESET BUFFER

ADDRESS:&FF1D IN READ DATA FROM BUFFER

If the buffer is enabled, then the address &FF1C contains the number of

available characters in the buffer when you make an IN. Making an OUT any value

at this address, resets the buffer.

To enable/disable the buffer, you use BIT 4 of UART REG3.

When you make an IN from the address &FF1D, then you read the incoming

data from the buffer, and the number of available bytes in the buffer decreases.

When characters are received, then the number of bytes in the buffer increases.

An example in BASIC

10 OUT &FF0B,16 ;Enable the buffer

20 OUT &FF1C,0 ;Reset the buffer

30 IF INP(&FF1C)=0 THEN 30 ;Wait for incoming characters in the buffer

40 ?INP(&FF1D) ;Print data from the buffer

50 GOTO 30

An example in Assembly (don’t worry, I know that the code is not optimized :))

LD A,1

LD BC,&FF1C

OUT(C),A ;Reset the buffer

LD BC,&FF1D

OUT(C),A ;Enable the buffer

LOOP: LD BC,&FF1C

IN A,(C)

CP A,0 ;Loop until a character appears

JR Z,LOOP

LD BC,&FF1D

IN A,(C) ;Read data from buffer

CALL &BB5A ;Print data

JR LOOP

512 BYTES EEPROM

Since the microcontroller had the EEPROM, I thought that I should give the

ability for the CPC to access it. I know it’s not much but incase you want to

save some settings, it's quite good. Anyway, the addresses are from 0 till 511

(0-&1FF in HEX).

ADDRESS:&FF0C IN/OUT EEPROM ADDRESS HIGH BYTE

ADDRESS:&FF0D IN/OUT EEPROM ADDRESS LOW BYTE

The high byte can only be 0 or 1, a value bigger than 1 will be

automatically changed to 1

ADDRESS:&FF0E IN/OUT EEPROM READ/WRITE

This accesses the byte of the address of the EEPROM we’ve selected with

the addresses &FF0C and &FF0D. Here are some examples in BASIC

10 OUT &FF0C,0

20 OUT &FF0D,5 ;Select address 5

30 OUT &FF0E,25 ;Store the value 25 at the address 5

40 OUT &FF0C,&1

50 OUT &FF0D,&4E ;Select address &14E (334 in decimal)

60 A=INP(&FF0E) ;Read the contents of the address &14E

70 PRINT A

THE ANALOG TO DIGITAL CONVERTER

The CPC booster gives you the ability to make 8bit samples on the CPC.

Ofcourse, there were some samplers in the past for the CPC, like the Music

Machine, but this time it’s easier than ever! The sampler can be used only

through assembly because in Basic the sampling rate is worse than an 1 bit

sample!

ADDRESS:&FF0F IN/OUT ADC SAMPLING FREQUENCY

With this address, we can select the sampling rate. We don’t have to make

complicated routines on the CPC, the baud rate can be set directly on the CPC

booster, so we just make a simple IN to get the data and all the timing is done

automatically. There are 8 possible values to select frequency, value 0 and 1

are the same:

 VALUE DIVISION FACTOR SAMPLING FREQUENCY

 0 2 5529 KHz

 1 2 5529 KHz

 2 4 2764 KHz

 3 8 1382 KHz

 4 16 691 KHz

 5 32 345 KHz

 6 64 172 KHz

 7 128 86 KHz

As you understand, if the frequency is high, you have good quality but it

takes a lot of memory and you can’t make long samples. In the worst quality, 86

KHz, you can create around 14 sec long sample, which takes 64 KB.

ASSEMBLY: LD A,3 ;Select 1382 KHz sampling freq.

 LD BC,&FF0F

 OUT(C),A

ADDRESS:&FF10 IN/OUT ADC CHANNEL SELECTION

With this address you select from which channel you will get the data.

There are two channels, so we have the possibility to make stereo samples, or to

record a stereo sample from a music CD and turn it into mono. To select channel

1, we send the value 0, to select channel 2 we send value 1. Any value between 2

and 255 selects channel 1 again (I’ve just noticed that!).

ASSEMBLY: LD A,0 ;Select channel 1

 LD BC,&FF10

 OUT(C),A

ADDRESS:&FF11 IN READ ADC VALUE

To read the data from the A/D convertor, we make an IN from this address.

Could it be simplier? Here’s a routine which stores a sample with max width 10KB

 LD HL,16384 ;Address to store the sample

 LD DE,10000 ;Byte counter (10KB long sample)

 LD BC,&FF11 ;Address for reading data

SAMPLE: IN A,(C) ;Read byte from the convertor

 LD(HL),A ;Store byte in the address that HL points

 INC HL ;Increase sample address to store next byte

 DEC DE ;Decrease counter

 LD A,D

 OR E

 JR NZ,SAMPLE ;Check if sample is 10KB long.

During the recording of a sample, you can adjust the incoming record

volume with the potensiometer located on the top of the CPC booster. Use a

screwdriver and adjust it till you get a clear sound. A way to do this

adjustment is to make an in with &FF11 and send the value directly to the PWM.

ADDRESS:&FF12 IN/OUT KEYBOARD SCANNING FUNCTIONS

The functions on the address &FF12 are combined with a routine on the CPC.

What this routine does is by having the 10 bytes of the CPC keyboard scan, can

return to you the pressed key. There is a table which will help you find out the

exact key pressed. This routine can only be used in an editor, when you can only

press one key at a time (combined with shift).

First of all, let's see the routine on the CPC. What this routine does is

making the whole keyboard scan and sending each line's byte to the CPC Booster.

LD BC,&FF12:IN A,(C) ;Making a false read in the beginning of the

program just to reset the routine

... MAIN PROGRAM ...

CALL KEYSCAN ;Call routine to scan the CPC keyboard

LD BC,&FF12

IN A,(C) ;Get pressed key

... JUMP TO MAIN PROGRAM ...

KEYSCAN: LD BC,&F40E:OUT(C),C

LD BC,&F6C0:OUT(C),C

DB &ED,&71

LD BC,&F792:OUT(C),C

LD BC,&F640:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A

;Read the byte from the scanned line

LD BC,&F641:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A

;and send it to the CPC booster

LD BC,&F642:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A

LD BC,&F643:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A

LD BC,&F644:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A

LD BC,&F645:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A

LD BC,&F646:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A

LD BC,&F647:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A

LD BC,&F648:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A

LD BC,&F649:OUT(C),C:LD B,&F4:IN A,(C):LD BC,&FF12:OUT(C),A

 LD BC,&F782:OUT(C),C:LD BC,&F600:OUT(C),C:RET

The routine in the CPC booster, after receiving 10 bytes, it will

automatically find the pressed key and will give you its value when you will

make an IN from the address &FF12. If we send 9 bytes or any value less than 10,

then we will read 0. You have to send 10 bytes to get a correct response. Here’s

the table with the returned values:

00=No key 128=No key

01=a 129=A

02=b 130=B

03=c 131=C

04=d 132=D

05=e 133=E

06=f 134=F

07=g 135=G

08=h 136=H

09=i 137=I

10=j 138=J

11=k 139=K

12=l 140=L

13=m 141=M

14=n 142=N

15=o 143=O

16=p 144=P

17=q 145=Q

18=r 146=R

19=s 147=S

20=t 148=T

21=u 149=U

22=v 150=V

23=w 151=W

24=x 152=X

25=y 153=Y

26=z 154=Z

27=1 155=!

28=2 156=”

29=3 157=#

30=4 158=$

31=5 159=%

32=6 160=&

33=7 161=’

34=8 162=(

35=9 163=)

36=0 164=_

37=- 165==

38=^ 166=EURO

39=@ 167=|

40=[168={

41=: 169=*

42=; 170=+

43=] 171=}

44=, 172=<

45=. 173=>

46=/ 174=?

47=\ 175=`

48=f0

49=f1

50=f2

51=f3

52=f4

53=f5

54=f6

55=f7

56=f8

57=f9

58=f.

59=cursor left

60=cursor right

61=cursor up

62=cursor down

63=CLR

64=DEL

65=RETURN

66=ENTER

67=SPACE

68=COPY

69=CAPS LOCK

70=CONTROL

71=TAB

72=ESC

As you can see, you can check bit7 to see if the shift key is pressed or

not. To transform these values into ascii, you can use a 256 bytes page alligned

table and a small routine:

LD BC,&FF12

IN A,(C)

LD L,A

LD H,High byte of the table’s address

LD A,(HL)

PROGRAM MEMORY READ/WRITE

The AVR mega16 has 16KB of program memory. The CPC booster gives you the

ability to read and write this memory, that’s why the update of the peripheral

is possible. Right now, less than 5 KB of this memory is used for the bios of

the CPC booster, so you have around 10KB for your own purposes. Ofcourse, you

already know that you should be careful to which address you will store your

data, because you may accidentally erase data. If this happens, then you should

try to re-update the bios and if that fails, then you will have to send the

microcontroller back to me to re-program it.

A few words about the memory of the microcontroller. It is divided into

128 pages of 128 bytes each. 128*128=16384 bytes. Every command of the AVR is

16bit, which means that it takes two bytes. There are two ways to use the

program memory through the CPC Booster, the page mode and the address mode. In

the page mode, you select the address using two registers, one contains the page

number and the other the address inside the page. In the address mode, the

memory is divided like a normal ram, there are 16384 addresses of 8 bit each.

You use two registers, one for the high byte and one for the low byte.

You can use both ways when you want to read the program memory but you can

only store data using the page mode.

ADDRESS:&FF13 OUT WRITE PAGE

ADDRESS:&FF14 OUT STORE BYTES TO PAGE BUFFER

ADDRESS:&FF15 IN/OUT ADDRESS OF THE PAGE BUFFER

To write a page you have to fill the data into a buffer and then make an

out at the address &FF13. To explain it better, here’s a small basic program to

store data to a page.

10 ADDRESS=16384 ;Source address data from the CPC

20 PAGE=80 ;We will write the data to page 80 (0-127)

30 FOR BUFFER=0 TO 127 ;Storing 128 bytes

40 OUT &FF14,PEEK(ADDRESS) ;Sending each byte to the CPC booster buffer. This

function auto increases the buffer’s address.

50 ADDRESS=ADDRESS+1

55 NEXT BUFFER

60 OUT &FF13,PAGE ;After filling the buffer, write the data to the

selected page.

The address &FF15, points at the next address of the buffer. If we make an

OUT &FF14,X, then the contents of the &FF15 will be automatically increased.

Ofcourse, when it reaches 128, it goes back to 0. You can use this address if

you want to reset the buffer or to see how many bytes you‘ve already stored

inside the buffer. Kind of useless function but anyway.

ADDRESS:&FF16 IN/OUT PAGE NUMBER

ADDRESS:&FF17 IN/OUT ADDRESS INSIDE PAGE

ADDRESS:&FF18 IN READ DATA

Those addresses are used to read data from the program memory using the

page mode. Address &FF16 contains the page you want to read, address &FF17

contains the address inside the page (0-127) and using &FF18 after you set the

previous addresses, you read the data.

EXAMPLE IN BASIC

10 PAGE=27

20 ADDRESS=0

30 OUT &FF16,PAGE

40 OUT &FF17,ADDRESS

50 ?INP(&FF18)

ADDRESS:&FF19 IN/OUT ADDRESS HIGH BYTE

ADDRESS:&FF1A IN/OUT ADDRESS LOW BYTE

ADDRESS:&FF1B IN READ DATA

I don’t think that you need further explanations... I remind you that the

addresses are from 0 till 16383.

TTL INPUT/OUTPUT

This is a 5 bit port which can be used as input/output for TTL signals. I

think that it’s one of the most important characteristics of the CPC Booster

because it gives you the ability to have a parallel port even if you only have 5

bits to control. People who like electronics and especially digital circuits

already know how important this is.

The port is bi-directional with optional internal pull-ups.

ADDRESS:&FF1E IN/OUT 5 BIT PORT DATA DIRECTION (DDx)

ADDRESS:&FF1F IN/OUT 5 BIT PORT DATA REGISTER (PORTx)

ADDRESS:&FF20 IN 5 BIT PORT INPUT (PINx)

Those are the three addresses to control the port. Each one has 5 bits

which control the 5 pins of the outport.

We can name the bits as DDx, PORTx and PINx. The DDx bit in the Data

direction register selects the direction of the x pin (output or input). If the

bit is zero, then the pin is an input, if it is set then the pin is an output.

If PORTx is set when the pin is configured as an input by the DDx bit,

then the internal pull-up resistor is activated. To switch the pull-up resistor

off, PORTx has to be zero or the pin must be configured as an output.

If PORTx is set when the pin is configured as an output pin, the port pin

is driven high (5 Volts output). If PORTx is zero when the pin is configured as

an output pin, then the port pin is driven low (0 Volts output).

Independent of the setting of the Data direction bit (DDx), the port pin

can be read through the PINx register bit.

Some examples:

LD A,%11111

LD BC,&FF1E

OUT (C),A ;All the pins are set as output pins

LD A,%10101

LD BC,&FF1F

OUT (C),A ;Pins 1,3 and 5 are driven high and

;pins 2 and 4 are driven low.

LD A,%11001

LD BC,&FF1E

OUT (C),A ;Pins 1,4,5 are configured as outputs.

LD A,%10111

LD BC,&FF1F

OUT (C),A ;Pins 1 and 5 are driven high. In pins 2 and 3,

;the internal pull-ups are activated.

LD BC,&FF20

IN A,(C) ;A has the state of each of the 5 pins.

A pull-up resistor is used when we set a pin as an input. Incase we have

nothing connected to that pin externally, if we read the PINx register bit, we

will get the value 1 because it’s internally connected to the VCC through a

resistor. A signal connected to the ground through a switch can drive this pin

low. If you want to connect a button or a switch, one pin of the switch is

connected to the ground and the other to the CPC Booster pin.

When the button is not pressed, you read “1” because of the internal pull-

up. When the button is pressed, then the ground is connected to the pin and you

read “0”. I can’t give you any more information about the TTL signals and the

use of pull-ups because this is a manual for the CPC booster, not a lesson in

electronics. But you can have a look at the PDF of the ATMega16, where the

functions of the pins are described in a better way.

The pins are from left to right (TOP VIEW OF THE CPC BOOSTER):

GND, PIN1, PIN2, PIN3, PIN4, PIN5

MULTIPLICATION

ADDRESS:&FF21 IN/OUT MULTIPLIER 1

ADDRESS:&FF22 IN/OUT MULTIPLIER 2

ADDRESS:&FF23 IN RESULT HIGH BYTE

ADDRESS:&FF24 IN RESULT LOW BYTE

I think that this function is very easy. First you give a value for

multiplier 1 and then you give a value for multiplier 2. Whenever you enter a

value to multiplier 2, a multiplication between multiplier 1 and multiplier 2 is

done and the result is stored in addresses &FF23 and &FF24. The result will

remain intact as long as the next multiplication takes place.

This is a multiplication between two 8 bit numbers and the result will be

a 16 bit number.

10 INPUT “MULTIPLIER 1”;A

20 INPUT “MULTIPLIER 2”;B

30 OUT &FF21,A

40 OUT &FF22,B

50 PRINT INP(&FF23)*256+INP(&FF24)

READ VERSION OF THE CPC BOOSTER+

ADDRESS:&FF25 IN/OUT READ VERSION / RESET TEXT POINTER

You can read some info of the booster+ you have using this routine:

10 OUT &FF25,0 ;RESET TEXT POINTER

20 A=INP(&FF25)

30 IF A=0 THEN END

40 PRINT CHR$(A);

50 GOTO 20

